Meta-Prism: Ultra-fast and highly accurate microbial community structure search utilizing dual indexing and parallel computation

Author:

Zhu Mo1,Kang Kai1,Ning Kang1

Affiliation:

1. Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center of AI Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Abstract Microbiome samples are accumulating at an unprecedented speed. As a result, a massive amount of samples have become available for the mining of the intrinsic patterns among them. However, due to the lack of advanced computational tools, fast yet accurate comparisons and searches among thousands to millions of samples are still in urgent need. In this work, we proposed the Meta-Prism method for comparing and searching the microbial community structures amongst tens of thousands of samples. Meta-Prism is at least 10 times faster than contemporary methods serving the same purpose and can provide very accurate search results. The method is based on three computational techniques: dual-indexing approach for sample subgrouping, refined scoring function that could scrutinize the minute differences among samples, and parallel computation on CPU or GPU. The superiority of Meta-Prism on speed and accuracy for multiple sample searches is proven based on searching against ten thousand samples derived from both human and environments. Therefore, Meta-Prism could facilitate similarity search and in-depth understanding among massive number of heterogenous samples in the microbiome universe. The codes of Meta-Prism are available at: https://github.com/HUST-NingKang-Lab/metaPrism.

Funder

National Science Foundation of China

National Undergraduate Training Program for Innovation and Entrepreneurship of China

Ministry of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3