Effect of Electronic Cigarette Liquid pH on Retention of 11C-Nicotine in a Respiratory Tract Model

Author:

Solingapuram Sai Kiran K1,Rose Jed E2,Mukhin Alexey G2ORCID

Affiliation:

1. Department of Radiology, Atrium Health Wake Forest Baptist Medical Center , Winston-Salem, NC , USA

2. Department of Psychiatry and Behavioral Sciences, Duke University Medical Center , Durham, NC , USA

Abstract

Abstract Introduction Based on our preliminary 11C-nicotine positron emission tomography (PET) imaging studies in humans, we speculated that greater deposition of nicotine in the respiratory tract from electronic cigarettes compared to combustible cigarettes could result from the alkaline pH of typical aerosol-producing electronic cigarette liquids (e-liquids). To address this hypothesis, we assessed the effect of e-liquid pH on the retention of nicotine in vitro using 11C-nicotine, PET, and a human respiratory tract model of nicotine deposition. Aims and Methods A single 2-second 35-mL puff was delivered to a human respiratory tract cast from a 2.8-Ohm cartomizer at 4.1 volts. Immediately after the puff, a 2-second 700-mL air wash-in volume was administered. E-liquids (glycerol and propylene glycol 50/50 vol/vol) containing 24 mg/mL nicotine were mixed with 11C-nicotine. Deposition (retention) of nicotine was assessed using a GE Discovery MI DR PET/CT scanner. Eight e-liquids with different pH values (range 5.3–9.6) were investigated. All experiments were performed at room temperature and at a relative humidity of 70%–80%. Results Retention of nicotine in the respiratory tract cast was pH dependent and the pH-sensitive component of the retention was well described by a sigmoid curve. In total, 50% of the maximal pH-dependent effect was observed at pH 8.0, which is close to the pKa2 of nicotine. Conclusions The retention of nicotine in the respiratory tract conducting airways is dependent on the e-liquid pH. Lowering the e-liquid pH reduces retention of nicotine. Nonetheless, reduction of the pH below 7 has little effect, consistent with the pKa2 of protonated nicotine. Implications Similar to combustible cigarettes, the retention of nicotine in the human respiratory tract from consumption of electronic cigarettes may have some health consequences and affect nicotine dependence. Here we demonstrated that the retention of nicotine in the respiratory tract is dependent on the e-liquid pH, and lowering pH reduces retention of nicotine in conducting airways of the respiratory tract. Therefore, e-cigarettes with low pH values would result in reduced respiratory tract nicotine exposure and faster delivery of nicotine to the central nervous system (CNS). The latter can be associated with e-cigarette abuse liability and the effectiveness of e-cigarettes as substitutes for combustible cigarettes.

Funder

National Institute on Drug Abuse

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3