Ultraconserved elements resolve the phylogeny and corroborate patterns of molecular rate variation in herons (Aves: Ardeidae)

Author:

Hruska Jack P12ORCID,Holmes Jesse2,Oliveros Carl3,Shakya Subir3,Lavretsky Philip4,McCracken Kevin G5,Sheldon Frederick H3ORCID,Moyle Robert G2

Affiliation:

1. Department of Biological Sciences, Texas Tech University , Lubbock, Texas , USA

2. Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas , Lawrence, Kansas , USA

3. Museum of Natural Sciences and Department of Biological Sciences, Louisiana State University , Baton Rouge, Louisiana , USA

4. Department of Biological Sciences, University of Texas El Paso , El Paso, Texas , USA

5. Department of Biology, Marine Biology and Ecology, and Human Genetics and Genomics, University of Miami , Coral Gables, Florida , USA

Abstract

Abstract Thoroughly sampled and well-supported phylogenetic trees are essential to taxonomy and to guide studies of evolution and ecology. Despite extensive prior inquiry, a comprehensive tree of heron relationships (Aves: Ardeidae) has not yet been published. As a result, the classification of this family remains unstable, and their evolutionary history remains poorly studied. Here, we sample genome-wide ultraconserved elements (UCEs) and mitochondrial DNA sequences (mtDNA) of >90% of extant species to estimate heron phylogeny using a combination of maximum likelihood, coalescent, and Bayesian inference methods. The UCE and mtDNA trees are mostly concordant with one another, providing a topology that resolves relationships among the 5 heron subfamilies and indicates that the genera Gorsachius, Botaurus, Ardea, and Ixobrychus are not monophyletic. We also present the first genetic data from the Forest Bittern Zonerodius heliosylus, an enigmatic species of New Guinea; our results suggest that it is a member of the genus Ardeola and not the Tigrisomatinae (tiger herons), as previously thought. Finally, we compare molecular rates between heron clades in the UCE tree with those in previously constructed mtDNA and DNA–DNA hybridization trees. We show that rate variation in the UCE tree corroborates rate patterns in the previously constructed trees—that bitterns (Ixobrychus and Botaurus) evolved comparatively faster, and some tiger herons (Tigrisoma) and the Boat-billed Heron (Cochlearius) more slowly, than other heron taxa.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3