Nitrogen deficiency- and sucrose-induced anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in Arabidopsis

Author:

Liao Hong-Sheng12,Yang Chien-Chih2,Hsieh Ming-Hsiun13

Affiliation:

1. Institute of Plant and Microbial Biology , Academia Sinica, Taipei , Taiwan

2. Department of Biochemical Science and Technology, National Taiwan University , Taipei , Taiwan

3. Department of Life Sciences, National Central University , Taoyuan , Taiwan

Abstract

Abstract Anthocyanin accumulation is a hallmark response to nitrogen (N) deficiency in Arabidopsis. Although the regulation of anthocyanin biosynthesis has been extensively studied, the roles of chromatin modification in this process are largely unknown. In this study we show that anthocyanin accumulation induced by N deficiency is modulated by HISTONE DEACETYLASE15 (HDA15) in Arabidopsis seedlings. The hda15-1 T-DNA insertion mutant accumulated more anthocyanins than the wild-type when the N supply was limited, and this was caused by up-regulation of anthocyanin biosynthetic and regulatory genes in the mutant. The up-regulated genes also had increased levels of histone acetylation in the mutant. The accumulation of anthocyanins induced by sucrose and methyl jasmonate, but not that induced by H2O2 and phosphate starvation, was also greater in the hda15-1 mutant. While sucrose increased histone acetylation in the hda15-1 mutant in genes in a similar manner to that caused by N deficiency, methyl jasmonate only enhanced histone acetylation in the genes involved in anthocyanin biosynthesis. Our results suggest that different stresses act through distinct regulatory modules to activate anthocyanin biosynthesis, and that HDA15-mediated histone modification modulates the expression of anthocyanin biosynthetic and regulatory genes to avoid overaccumulation in response to N deficiency and other stresses.

Funder

Ministry of Science and Technology of Taiwan

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Physiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3