Optimization of solid oxide fuel cell power generation voltage prediction based on improved neural network

Author:

Wei Liming1,Wang Yixuan1

Affiliation:

1. School of Electrical and Computer Engineering, Jilin Jianzhu University , Changchun City, Jilin Province, China

Abstract

Abstract This paper proposes a method for predicting the generation voltage of a solid oxide fuel cell based on the data results of a stand-alone solid oxide fuel single cell simulation model under ideal conditions, with the aim of improving the generation efficiency and extending the service life of the solid oxide fuel cell. In this paper, a modified back propagation (BP) neural network algorithm is used to improve the prediction accuracy of the solid oxide fuel cell generation voltage by using the whale algorithm to optimize the BP neural network model to improve its convergence and achieve the effect of improving the prediction accuracy. First, the characteristics of the independent solid oxide fuel cell are introduced and simulated. Second, the long short-term memory network model, linear regression network model and BP neural network are simulated and compared, and the results show that the BP neural network prediction model is more accurate and can be optimized and improved. Finally, the BP neural network is optimized and simulated using the whale algorithm, and the simulation results show that the method has better convergence and higher prediction accuracy than the traditional BP neural network prediction model.

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

Reference22 articles.

1. Carbon dioxide toxicity and climate change: a major unapprehended risk for human health;Bierwirth;Research Gate,2018

2. The impact of fossil-fuel subsidies on renewable electricity generation;Bridle;policycommonsnet,2014

3. Stationary fuel cells. Chapter 4: technology assessments;US Department of Energy;quadrennial Technology Review,2015

4. High-efficiency power generation–review of alternative systems;Zhu;Tech Rep,2015

5. Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm;Bozorgmehri;Fuel Cells,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3