Flame propagation and CO/CO2 generation characteristics of lignite dust explosion in horizontal pipeline

Author:

Liu Tianqi,Wang Ning1,Sun Ruicheng1,Cai Zhixin1,Tian Weiye1,Jia Ruiheng1

Affiliation:

1. School of Safety Engineering, Shenyang Aerospace University, Shenyang, Liaoning 110136, PR China

Abstract

Abstract To reveal the flame propagation and CO/CO2 generation characteristics of coal dust explosion, lignite dust cloud is studied through experiment and numerical simulation in a horizontal pipeline apparatus. The result indicated that within 0.5 s after explosion, the flame propagation distance rapidly increases until the explosion reaction is sufficient. FLUENT is used to simulate the flame propagation and CO/CO2 generation characteristics. It is found that the simulation error is acceptable and the simulation result is consistent with the experimental result. The explosion space is divided into five zones by simulating the flame temperature. It also revealed that z = 0.3 ~ 0.6 m in the pipeline generates more CO because it is closed to the ignition zone. As the explosion spreads through the pipeline, the generated CO accumulates to the bottom of the pipeline, and the generated CO2 accumulates more in the upper part of the pipeline.

Funder

Project of Liaoning Provincial Department of Education

Project of Liaoning Provincial Department of Science and Technology

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

General Environmental Science,Architecture,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3