Flatworm Transcriptomes Reveal Widespread Parasitism by Histophagous Ciliates

Author:

Woodcock M Ryan123,Powers Kaleigh1,Snead Kirsten24,Pellettieri Jason1ORCID

Affiliation:

1. Department of Biology, Keene State College , Keene, NH , USA

2. Department of Science, Mathematics and Technology, Medaille University , Buffalo, NY , USA

3. Department of Natural Science, Trocaire College , Buffalo, NY , USA

4. Ira A. Fulton Schools of Engineering, Arizona State University , Tempe, AZ , USA

Abstract

Abstract Unicellular ciliates like Tetrahymena are best known as free-living bacteriovores, but many species are facultative or obligate parasites. These “histophages” feed on the tissues of hosts ranging from planarian flatworms to commercially important fish and the larvae of imperiled freshwater mussels. Here, we developed a novel bioinformatics pipeline incorporating the nonstandard ciliate genetic code and used it to search for Ciliophora sequences in 34 publicly available Platyhelminthes EST libraries. From 2,615,036 screened ESTs, we identified nearly 6,000 high-confidence ciliate transcripts, supporting parasitism of seven additional flatworm species. We also cultured and identified Tetrahymena from nine terrestrial and freshwater planarians, including invasive earthworm predators from the genus Bipalium and the widely studied regeneration models Dugesia japonica and Schmidtea mediterranea. A co-phylogenetic reconstruction provides strong evidence for the coevolution of histophagous Ciliophora with their Platyhelminthes hosts. We further report the antiprotozoal aminoglycoside paromomycin expels Tetrahymena from S. mediterranea, providing new opportunities to investigate the effects of this relationship on planarian biology. Together, our findings raise the possibility that invasive flatworms constitute a novel dispersal mechanism for Tetrahymena parasites and position the Platyhelminthes as an ideal model phylum for studying the ecology and evolution of histophagous ciliates.

Funder

Institutional Development Award

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3