LogBTF: gene regulatory network inference using Boolean threshold network model from single-cell gene expression data

Author:

Li Lingyu12ORCID,Sun Liangjie2,Chen Guangyi1,Wong Chi-Wing2,Ching Wai-Ki2,Liu Zhi-Ping1ORCID

Affiliation:

1. Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University , Jinan 250061, China

2. Advanced Modeling and Applied Computing Laboratory, Department of Mathematics, The University of Hong Kong , Hong Kong, China

Abstract

AbstractMotivationFrom a systematic perspective, it is crucial to infer and analyze gene regulatory network (GRN) from high-throughput single-cell RNA sequencing data. However, most existing GRN inference methods mainly focus on the network topology, only few of them consider how to explicitly describe the updated logic rules of regulation in GRNs to obtain their dynamics. Moreover, some inference methods also fail to deal with the over-fitting problem caused by the noise in time series data.ResultsIn this article, we propose a novel embedded Boolean threshold network method called LogBTF, which effectively infers GRN by integrating regularized logistic regression and Boolean threshold function. First, the continuous gene expression values are converted into Boolean values and the elastic net regression model is adopted to fit the binarized time series data. Then, the estimated regression coefficients are applied to represent the unknown Boolean threshold function of the candidate Boolean threshold network as the dynamical equations. To overcome the multi-collinearity and over-fitting problems, a new and effective approach is designed to optimize the network topology by adding a perturbation design matrix to the input data and thereafter setting sufficiently small elements of the output coefficient vector to zeros. In addition, the cross-validation procedure is implemented into the Boolean threshold network model framework to strengthen the inference capability. Finally, extensive experiments on one simulated Boolean value dataset, dozens of simulation datasets, and three real single-cell RNA sequencing datasets demonstrate that the LogBTF method can infer GRNs from time series data more accurately than some other alternative methods for GRN inference.Availability and implementationThe source data and code are available at https://github.com/zpliulab/LogBTF.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Reference54 articles.

1. Gene regulatory network inference from sparsely sampled noisy data;Aalto;Nat Commun,2020

2. SCENIC: single-cell regulatory network inference and clustering;Aibar;Nat Methods,2017

3. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model;Akutsu;Pac Symp Biocomput,1999

4. Inferring qualitative relations in genetic networks and metabolic pathways;Akutsu;Bioinformatics,2000

5. scGENA: a single-cell gene coexpression network analysis framework for clustering cell types and revealing biological mechanisms;Algabri;Bioengineering,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3