Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences
Author:
Affiliation:
1. National Institute of Advanced Industrial Science and Technology, Artificial Intelligence Research Center, Tokyo, Japan
2. AIST- Tokyo Tech Real World Big-Data Computation Open Innovation Laboratory, Tokyo, Japan
Funder
NEDO
JSPS KAKENHI
Platform Project for Supporting Drug Discovery and Life Science Research
Basis for Supporting Innovative Drug Discovery and Life Science Research
BINDS
AMED
JST CREST
Publisher
Oxford University Press (OUP)
Subject
Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability
Link
http://academic.oup.com/bioinformatics/article-pdf/35/2/309/27497010/bty535.pdf
Reference39 articles.
1. A novel mode of gleevec binding is revealed by the structure of spleen tyrosine kinase;Atwell;J. Biol. Chem,2004
2. Supervised prediction of drug–target interactions using bipartite local models;Bleakley;Bioinformatics,2009
3. Chemogenomics: an emerging strategy for rapid target and drug discovery;Bredel;Nat. Rev. Genet,2004
4. Prediction of chemical–protein interactions: multitarget-qsar versus computational chemogenomic methods;Cheng;Mol. BioSyst,2012
Cited by 423 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. MMDG-DTI: Drug–target interaction prediction via multimodal feature fusion and domain generalization;Pattern Recognition;2025-01
2. Curvature-enhanced graph convolutional network for biomolecular interaction prediction;Computational and Structural Biotechnology Journal;2024-12
3. Drug–target binding affinity prediction model based on multi-scale diffusion and interactive learning;Expert Systems with Applications;2024-12
4. Enhanced multi-scenario running safety assessment of railway bridges based on graph neural networks with self-evolutionary capability;Engineering Structures;2024-11
5. A novel graph neural network framework with self-evolutionary mechanism: Application to train-bridge coupled systems;Advances in Engineering Software;2024-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3