Characterizing therapeutic signatures of transcription factors in cancer by incorporating profiles in compound treated cells

Author:

Jung Jinmyung1ORCID

Affiliation:

1. Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong 18323, Republic of Korea

Abstract

Abstract Motivation Cancers are promoted by abnormal alterations in biological processes, such as cell cycle and apoptosis. An immediate reason for those aberrant processes is the deregulation of their involved transcription factors (TFs). Thus, the deregulated TFs in cancer have been experimented as successful therapeutic targets, such as RARA and RUNX1. This therapeutic strategy can be accelerated by characterizing new potential TF targets. Results Two kinds of therapeutic signatures of TFs in A375 (skin) and HT29 (colon) cancer cells were characterized by analyzing TF activities under effective and ineffective compounds to cancer. First, the therapeutic TFs (TTs) were identified as the TFs that are significantly activated or repressed under effective compared to ineffective compounds. Second, the therapeutically correlated TF pairs (TCPs) were determined as the TF pairs whose activity correlations show substantial discrepancy between the effective and ineffective compounds. It was facilitated by incorporating (i)compound-induced gene expressions (LINCS), (ii) compound-induced cell viabilities (GDSC) and (iii) TF–target interactions (TRUST2). As a result, among 627 TFs, the 35 TTs (such as MYCN and TP53) and the 214 TCPs (such as FOXO3 and POU2F2 pair) were identified. The TTs and the proteins on the paths between TCPs were compared with the known therapeutic targets, tumor suppressors, oncogenes and CRISPR-Cas9 knockout screening, which yielded significant consequences. We expect that the results provide good candidates for therapeutic TF targets in cancer. Availability and implementation The data and Python implementations are available at https://github.com/jmjung83/TT_and_TCP. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Research Foundation of Korea

Korea government

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3