Neuron tracing from light microscopy images: automation, deep learning and bench testing

Author:

Liu Yufeng1,Wang Gaoyu2,Ascoli Giorgio A3,Zhou Jiangning4,Liu Lijuan1ORCID

Affiliation:

1. School of Biological Science and Medical Engineering, Southeast University , Nanjing, China

2. School of Computer Science and Engineering, Southeast University , Nanjing, China

3. Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University , Fairfax, VA, USA

4. Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University , Hefei, China

Abstract

AbstractMotivationLarge-scale neuronal morphologies are essential to neuronal typing, connectivity characterization and brain modeling. It is widely accepted that automation is critical to the production of neuronal morphology. Despite previous survey papers about neuron tracing from light microscopy data in the last decade, thanks to the rapid development of the field, there is a need to update recent progress in a review focusing on new methods and remarkable applications.ResultsThis review outlines neuron tracing in various scenarios with the goal to help the community understand and navigate tools and resources. We describe the status, examples and accessibility of automatic neuron tracing. We survey recent advances of the increasingly popular deep-learning enhanced methods. We highlight the semi-automatic methods for single neuron tracing of mammalian whole brains as well as the resulting datasets, each containing thousands of full neuron morphologies. Finally, we exemplify the commonly used datasets and metrics for neuron tracing bench testing.

Funder

Southeast University

Brain Research Project, ‘Mammalian Whole Brain Mesoscopic Stereotaxic 3D Atlas’

NIH

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3