pDriver: a novel method for unravelling personalized coding and miRNA cancer drivers

Author:

Pham Vu V H1ORCID,Liu Lin1,Bracken Cameron P23,Nguyen Thin4,Goodall Gregory J23,Li Jiuyong1,Le Thuc D1ORCID

Affiliation:

1. UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia

2. Centre for Cancer Biology, An alliance of SA Pathology and University of South Australia, Adelaide, SA 5000, Australia

3. Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia

4. Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC 3125, Australia

Abstract

Abstract Motivation Unravelling cancer driver genes is important in cancer research. Although computational methods have been developed to identify cancer drivers, most of them detect cancer drivers at population level. However, two patients who have the same cancer type and receive the same treatment may have different outcomes because each patient has a different genome and their disease might be driven by different driver genes. Therefore new methods are being developed for discovering cancer drivers at individual level, but existing personalized methods only focus on coding drivers while microRNAs (miRNAs) have been shown to drive cancer progression as well. Thus, novel methods are required to discover both coding and miRNA cancer drivers at individual level. Results We propose the novel method, pDriver, to discover personalized cancer drivers. pDriver includes two stages: (i) constructing gene networks for each cancer patient and (ii) discovering cancer drivers for each patient based on the constructed gene networks. To demonstrate the effectiveness of pDriver, we have applied it to five TCGA cancer datasets and compared it with the state-of-the-art methods. The result indicates that pDriver is more effective than other methods. Furthermore, pDriver can also detect miRNA cancer drivers and most of them have been confirmed to be associated with cancer by literature. We further analyze the predicted personalized drivers for breast cancer patients and the result shows that they are significantly enriched in many GO processes and KEGG pathways involved in breast cancer. Availability and implementation pDriver is available at https://github.com/pvvhoang/pDriver. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

ARC

Australian Research Council Discovery

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3