Constructing maps between distinct cell fates and parametric conditions by systematic perturbations

Author:

Tang Ruoyu1,He Xinyu1,Wang Ruiqi12ORCID

Affiliation:

1. Department of Mathematics, Shanghai University , Shanghai 200444, China

2. Newtouch Center for Mathematics of Shanghai University, Shanghai University , Shanghai 200444, China

Abstract

Abstract Motivation Cell fate transitions are common in many developmental processes. Therefore, identifying the mechanisms behind them is crucial. Traditionally, due to complexity of networks and existence of plenty of kinetic parameters, dynamical analysis of biomolecular networks can only be performed by simultaneously perturbing a small number of parameters. Although many efforts have focused on how cell states change under specific perturbations, conversely, how to infer parametric conditions underlying distinct cell fates by systematic perturbations is less clear and needs to be further investigated. Results In this article, we present a general computational method by integrating systematic perturbations, unsupervised clustering, principal component analysis, and fitting analysis. The method can be used to to construct maps between distinct cell fates and parametric conditions by systematic perturbations. In particular, there are no needs of accurate parameter measurements and occurrence of bifurcations to establish the maps. To validate feasibility and inference performance of the method, we use toggle switch, inner cell mass, and epithelial mesenchymal transition as model systems to show how the maps are constructed and how system parameters encode essential information on cell fates. The maps tell us how systematic perturbations drive cell fate decisions and transitions, and allow us to purposefully predict, manipulate, and even control cell states. The approach is especially helpful in understanding crucial roles of certain parameter combinations during fate transitions. We hope that the approach can provide us valuable information on parametric or perturbation conditions so some specific targets, e.g. directional differentiation, can be realized. Availability and implementation No public data are used. The data we used are generated by randomly chosen values of model parameters in certain ranges, and the corresponding parameters are already attached in supplementary materials.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3