Protein intrinsically disordered regions have a non-random, modular architecture

Author:

McConnell Brendan S1,Parker Matthew W1ORCID

Affiliation:

1. Department of Biophysics, , University of Texas Southwestern Medical Center, Dallas, TX 75235, United States

Abstract

Abstract Motivation Protein sequences can be broadly categorized into two classes: those which adopt stable secondary structure and fold into a domain (i.e. globular proteins), and those that do not. The sequences belonging to this latter class are conformationally heterogeneous and are described as being intrinsically disordered. Decades of investigation into the structure and function of globular proteins has resulted in a suite of computational tools that enable their sub-classification by domain type, an approach that has revolutionized how we understand and predict protein functionality. Conversely, it is unknown if sequences of disordered protein regions are subject to broadly generalizable organizational principles that would enable their sub-classification. Results Here, we report the development of a statistical approach that quantifies linear variance in amino acid composition across a sequence. With multiple examples, we provide evidence that intrinsically disordered regions are organized into statistically non-random modules of unique compositional bias. Modularity is observed for both low and high-complexity sequences and, in some cases, we find that modules are organized in repetitive patterns. These data demonstrate that disordered sequences are non-randomly organized into modular architectures and motivate future experiments to comprehensively classify module types and to determine the degree to which modules constitute functionally separable units analogous to the domains of globular proteins. Availability and implementation The source code, documentation, and data to reproduce all figures are freely available at https://github.com/MWPlabUTSW/Chi-Score-Analysis.git. The analysis is also available as a Google Colab Notebook (https://colab.research.google.com/github/MWPlabUTSW/Chi-Score-Analysis/blob/main/ChiScore_Analysis.ipynb).

Funder

Welch Foundation

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3