Robust and ultrafast fiducial marker correspondence in electron tomography by a two-stage algorithm considering local constraints

Author:

Han Renmin12ORCID,Li Guojun1ORCID,Gao Xin2ORCID

Affiliation:

1. Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China

2. King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, Thuwal 23955-6900, Saudi Arabia

Abstract

Abstract Motivation Electron tomography (ET) has become an indispensable tool for structural biology studies. In ET, the tilt series alignment and the projection parameter calibration are the key steps toward high-resolution ultrastructure analysis. Usually, fiducial markers are embedded in the sample to aid the alignment. Despite the advances in developing algorithms to find correspondence of fiducial markers from different tilted micrographs, the error rate of the existing methods is still high such that manual correction has to be conducted. In addition, existing algorithms do not work well when the number of fiducial markers is high. Results In this article, we try to completely solve the fiducial marker correspondence problem. We propose to divide the workflow of fiducial marker correspondence into two stages: (i) initial transformation determination, and (ii) local correspondence refinement. In the first stage, we model the transform estimation as a correspondence pair inquiry and verification problem. The local geometric constraints and invariant features are used to reduce the complexity of the problem. In the second stage, we encode the geometric distribution of the fiducial markers by a weighted Gaussian mixture model and introduce drift parameters to correct the effects of beam-induced motion and sample deformation. Comprehensive experiments on real-world datasets demonstrate the robustness, efficiency and effectiveness of the proposed algorithm. Especially, the proposed two-stage algorithm is able to produce an accurate tracking within an average of  ⩽ 100 ms per image, even for micrographs with hundreds of fiducial markers, which makes the real-time ET data processing possible. Availability and implementation The code is available at https://github.com/icthrm/auto-tilt-pair. Additionally, the detailed original figures demonstrated in the experiments can be accessed at https://rb.gy/6adtk4. Supplementary information Supplementary data are available at Bioinformatics online.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

King Abdullah University of Science and Technology

Office of Sponsored Research

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computational Theory and Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Statistics and Probability

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3