Enhancing photovoltaic energy forecasting: a progressive approach using wavelet packet decomposition

Author:

Ferkous Khaled1ORCID,Guermoui Mawloud2,Bellaour Abderahmane1,boulmaiz Tayeb1,Bailek Nadjem3

Affiliation:

1. LMTESE Laboratory of Materials, Technology of Energy Systems and Environment, Université de Ghardaia , 47000 , Algeria

2. Renewable Energy Applied Research Unit (URAER) , Ghardaia, 47000 , Algeria

3. Laboratory of Mathematics Modeling and Applications, Department of Mathematics and Computer Science, Faculty of Sciences and Technology, Ahmed Draia University of Adrar , Adrar 01000 , Algeria

Abstract

Abstract Accurate photovoltaic (PV) energy forecasting plays a crucial role in the efficient operation of PV power stations. This study presents a novel hybrid machine-learning (ML) model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead. The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models. Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods, including Gaussian process regression, extreme learning machines, artificial neural networks and support vector machines, across all seasons. The proposed model exhibits lower normalized root mean square error (nRMSE) (2.116%) and root mean square error (RMSE) (208.233 kW) values, along with a higher coefficient of determination (R2) of 99.881%. Furthermore, the exceptional performance of the model is maintained even when tested with various prediction horizons. However, as the forecast horizon extends from 1.5 to 5.5 hours, the prediction accuracy decreases, evident by the increase in the RMSE (710.839 kW) and nRMSE (7.276%), and a decrease in R2 (98.462%). Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results. This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model, suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy, thereby contributing to more efficient grid management.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3