Endophytic diazotrophic communities from rice roots are diverse and weakly associated with soil diazotrophic community composition and soil properties

Author:

Ferrando Lucía1ORCID,Rariz Gastón1,Martínez-Pereyra Andrea1,Fernández-Scavino Ana1ORCID

Affiliation:

1. Laboratorio de Ecología Microbiana Medioambiental, Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República , General Flores 2124, Montevideo , Uruguay

Abstract

Abstract Aim Bacteria that promote plant growth, such as diazotrophs, are valuable tools for achieving a more sustainable production of important non-legume crops like rice. Different strategies have been used to discover new bacteria capable of promoting plant growth. This work evaluated the contribution of soil diazotrophs to the endophytic communities established in the roots of rice seedlings cultivated on seven representative soils from Uruguay. Methods and results The soils were classified into two groups according to the C and clay content. qPCR, terminal restriction fragment length polymorphism (T-RFLP), and 454-pyrosequencing of the nifH gene were used for analyzing diazotrophs in soil and plantlets’ roots grown from seeds of the same genotype for 25 days under controlled conditions. A similar nifH abundance was found among the seven soils, roots, or leaves. The distribution of diazotrophs was more uneven in roots than in soils, with dominance indices significantly higher than in soils (nifH T-RFLP). Dominant soils’ diazotrophs were mainly affiliated to Alphaproteobacteria and Planctomycetota. Conversely, Alpha, Beta, Gammaproteobacteria, and Bacillota were predominant in different roots, though undetectable in soils. Almost no nifH sequences were shared between soils and roots. Conclusions Root endophytic diazotrophs comprised a broader taxonomic range of microorganisms than diazotrophs found in soils from which the plantlets were grown and showed strong colonization patterns.

Funder

Agencia Nacional de Investigación e Innovación

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3