Azole and 5-nitroimidazole based nanoformulations are potential antiamoebic drug candidates against brain-eating amoebae

Author:

Akbar Noor12,Hussain Kashif3,Khalid Maria3,Siddiqui Ruqaiyyah45,Shah Muhammad Raza3,Khan Naveed Ahmed25

Affiliation:

1. Research Institute of Medical & Health Sciences, University of Sharjah, University , Sharjah 27272 , Unites Arab Emirates

2. Department of Clinical Sciences, College of Medicine, University of Sharjah , Sharjah 27272 , Unites Arab Emirates

3. H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi , Karachi City, Sindh 75270 , Pakistan

4. College of Arts and Sciences, American University of Sharjah, University City , Sharjah 26666 , United Arab Emirates

5. Department of Medical Biology, Faculty of Medicine, Istinye University , 34010 Istanbul , Turkey

Abstract

AbstractAimHerein, the anti-parasitic activity of azoles (fluconazole and itraconazole) and 5-nitroimdazole (metronidazole) against the brain-eating amoebae: Naegleria fowleri and Balamuthia mandrillaris was elucidated.Methods and resultsAzoles and 5-nitroimidazole based nanoformulations were synthesized and characterized using a UV-visible spectrophotometer, atomic force microscopy, and fourier transform infrared spectroscopy. H1-NMR, EI-MS, and ESI-MS were performed to determine their molecular mass and elucidate their structures. Their size, zeta potential, size distribution, and polydispersity index (PDI) were assessed. Amoebicidal assays revealed that all the drugs and their nanoformulations, (except itraconazole) presented significant anti-amoebic effects against B. mandrillaris, while all the treatments indicated notable amoebicidal properties against N. fowleri. Amoebicidal effects were radically enhanced upon conjugating the drugs with nanoparticles. The IC50 values for KM-38-AgNPs-F, KM-20-AgNPs-M, and KM-IF were 65.09, 91.27, and 72.19 µg.mL-1, respectively, against B. mandrillaris. Whereas against N. fowleri, the IC50 values were: 71.85, 73.95, and 63.01 µg.mL-1, respectively. Additionally, nanoformulations significantly reduced N. fowleri-mediated host cell death, while nanoformulations along with fluconazole and metronidazole considerably reduced Balamuthia-mediated human cell damage. Finally, all the tested drugs and their nanoformulations revealed limited cytotoxic activity against human cerebral microvascular endothelial cell (HBEC-5i) cells.ConclusionThese compounds should be developed into novel chemotherapeutic options for use against these distressing infections due to free-living amoebae, as currently there are no effective treatments.

Funder

University of Sharjah

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3