Multispecies Diffusion of Yttrium, Rare Earth Elements and Hafnium in Garnet

Author:

Bloch E M1,Jollands M C12,Devoir A1,Bouvier A -S1,Ibañez-Mejia M34,Baumgartner L P1

Affiliation:

1. Institute of Earth Sciences, Faculty of Geosciences and Environment, University of Lausanne, Lausanne 1015, Switzerland

2. Lamont–Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA

3. Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY 14627, USA

4. Department of Geosciences, University of Arizona, Tucson, AZ 85721 USA

Abstract

Abstract We report experimental data for Y, La, Lu and Hf diffusion in garnet, in which diffusant concentrations and silica activity have been systematically varied. Experiments were conducted at 950 and 1050 °C, at 1 atm pressure and oxygen fugacity corresponding to the quartz–fayalite–magnetite buffer. At Y and REE concentrations below several hundred ppm we observe both slow and fast diffusion mechanisms, which operate simultaneously and correspond to relatively high and low concentrations, respectively. Diffusivity of Y and REE is independent of silica activity over the studied range. General formulae for REE diffusion in garnet, incorporating data from this and previous studies, are  logDREE(f)(m2 s−1)=−10·24(±0·21)−221057(±4284)2·303RT(K) for the ‘fast’ REE diffusion mechanism at 1 atm pressure, and  logDREE(s)(m2 s−1)=−9·28(±0·65)−265200(±38540)+10800(±2600)×P(GPa)2·303RT(K) for the ‘slow’ REE diffusion mechanism. These slow and fast diffusion mechanisms are in agreement with previous, apparently conflicting, datasets for REE diffusion in garnet. Comparison with high-pressure experiments suggests that at high pressures (>∼1 GPa minimum) the fast diffusion mechanism no longer operates to a significant degree. When Y and/or REE surface concentrations are greater than several hundred ppm, complex concentration profiles develop. These profiles are consistent with a multi-site diffusion–reaction model, whereby Y and REE cations diffuse through, and exchange between, different crystallographic sites. Diffusion profiles of Hf do not exhibit any of the complexities observed for Y and REE profiles, and can be modeled using a standard (i.e. single mechanism) solution to the diffusion equation. Hafnium diffusion in garnet shows a negative dependence on silica activity, and is described by  logDHf(m2 s−1)=−8·85(±0·38)−299344(±15136)+12500(±900)×P(GPa)2·303RT(K)−0·52(±0·09)×log⁡10aSiO2. In many natural garnets, diffusion of both Lu and Hf would be sufficiently slow that the Lu–Hf system can be reliably used to date garnet growth. In cases in which significant Lu diffusion does occur, preferential retention of 176Hf/177Hf relative to 176Lu/177Hf will skew isochron relationships such that their apparent ages may not correspond to anything meaningful (e.g. garnet growth, peak temperature or the closure temperature of Lu or Hf). Late-stage reheating events are capable of causing larger degrees of preferential retention of 176Hf/177Hf relative to 176Lu/177Hf and partial to full resetting of the Sm–Nd system within garnet, thus increasing the separation between garnet Lu–Hf and Sm–Nd isochron dates, owing to the fact that these systems are more significantly disturbed through diffusion as more radiogenic 176Hf and 143Nd have accumulated.

Funder

Ambizione

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3