Regional Zoning of a Li-Cs-Ta Pegmatite Field: Insights from Monazite-Cheralite Chemistry, U-Th-Pb and Sm-Nd Isotopes

Author:

Wang Cheng12,Shao Yong-Jun2,Cawood Peter A3,Chen Jian-Feng24,Xiong Yi-Qu2,Wang Yue-Jun1

Affiliation:

1. Sun Yat-sen University Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, , Guangzhou, 510275, China

2. Central South University Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, School of Geosciences and Info-Physics, , Changsha, 410083, China

3. Monash University School of Earth, Atmosphere and Environment, , Melbourne, Victoria, VIC 3010, Australia

4. Hunan Institute of Geological Survey , Changsha, 410116, China

Abstract

Abstract Li-Cs-Ta (LCT ) rare-element pegmatites occur as late-stage and highly fractionated bodies at the margins of regionally zoned granite pegmatite fields. The evolution of the granitic pegmatite system, including its rare-metal metallogeny, is often difficult to determine due to complex textures involving variable crystal size and a heterogeneous chemical composition. The Renli-Chuanziyuan pegmatite field (South China) displays a well-developed regional zonation sequence, involving a core of biotite-, two-mica- and muscovite monzogranites (MMs) that grades outward into microcline (K-zone), microcline-albite (K-Na-zone), albite (Na-zone) and albite-spodumene (Na-Li-zone) pegmatites. Monazite and the Th, Ca–end-member (i.e. cheralite) provide valuable age, rare earth element (REE) geochemical and Sm-Nd isotopic data for understanding the regional zoning process within the Renli-Chuanziyuan pegmatite. Monazite (from the MM and the K-, K-Na- and Na-zone pegmatites) and cheralite (from the Na-Li-zone pegmatite) have variable compositions and complex internal microtextures. The monazite and cheralite grains contain irregular areas with subtle heterogeneous BSE response along cracks and grain margins, suggesting that they have experienced alkali-bearing fluid-aided modification. However, these features are rarely seen in monazite from the K-zone pegmatite. Common Pb contamination and/or Pb loss during fluid-aided modification may have disturbed the monazite and cheralite U-Th-Pb isotopic system, due to the differential mobility of U, Th and Pb. The unaltered Na-zone monazite and Na-Li-zone cheralite yielded Th-Pb ages of 140.42 ± 2.30 Ma (2 σ, mean standard weighted deviation (MSWD) = 2.4, n = 14) and 139.58 ± 2.15 Ma (2 σ, MSWD = 2.9, n = 21), respectively. The unaltered MM, K-zone and K-Na-zone monazite yielded 206Pb-238U ages of 138.03 ± 2.18 (2 σ, MSWD = 2.5, n = 18), 140.39 ± 2.18 (2 σ, MSWD = 3.0, n = 20) and 140.58 ± 2.14 Ma (2 σ, MSWD = 2.0, n = 52), respectively. These ages for the four pegmatite zones are temporally consistent with a syngenetic origin for the magmatic sequence of biotite-, two-mica- and MM and the pegmatite system and rare-metal (Li-Nb-Ta-Rb-(Cs)-(Be)) mineralization. The Sm-Nd isotopic analyses of the unaltered monazite and cheralite from the MM and four pegmatite zones yield similar initial Nd isotopic composition with εNd(t) = −9.9 to −7.9, indicating an identical single-source region (i.e. the Neoproterozoic South China lower crust). The Sm/Nd ratios display a gradual decrease across the four pegmatite zones from the unaltered K-zone monazite to Na-Li-zone cheralite, i.e. 0.39–0.63 (avg. = 0.43) for K-zone, 0.29–0.35 (avg. = 0.31) for K-Na-zone, 0.26–0.30 (avg. = 0.28) for Na-zone and 0.21–0.27 (avg. = 0.24) for Na-Li-zone. Such progressive variations suggest their derivation from the same parental magma, which experienced varying degrees of fractionation before the extraction of pegmatitic melts. Comprehensive monazite and cheralite geochemistry, as well as in situ U-Th-Pb and Sm-Nd isotopic results indicate that Rayleigh-type fractional crystallization controls the mineralogical and geochemical evolution from a chemically zoned granite source.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3