A volar skin excisional wound model for in situ evaluation of multiple-appendage regeneration and innervation

Author:

Gao Huanhuan12,Liu Yiqiong12,Shi Ziwei3,Zhang Hongliang12,Wang Mengyang12,Chen Huating12,Li Yan12,Ji Shaifei12,Xiang Jiangbing12,Pi Wei12,Zhou Laixian12,Hong Yiyue12,Wu Lu12,Cai Aizhen45,Fu Xiaobing12,Sun Xiaoyan12

Affiliation:

1. Research Center for Tissue Repair and Regeneration Affiliated to Medical Innovation Research Department and 4th Medical Center , PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, , 2019RU051, Beijing 100048 , P. R. China

2. Chinese Academy of Medical Sciences , PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, , 2019RU051, Beijing 100048 , P. R. China

3. Institute of Chemistry, Chinese Academy of Sciences , 2 Beiyi Street, Zhong guan cun, Beijing 100190 , P. R. China

4. Research Institute of General Surgery , Department of General Surgery, , 28 Fu Xing Road, Beijing 100853 , P. R. China

5. the First Medical Center, PLA General Hospital , Department of General Surgery, , 28 Fu Xing Road, Beijing 100853 , P. R. China

Abstract

Abstract Background Promoting rapid wound healing with functional recovery of all skin appendages is the main goal of regenerative medicine. So far current methodologies, including the commonly used back excisional wound model (BEWM) and paw skin scald wound model, are focused on assessing the regeneration of either hair follicles (HFs) or sweat glands (SwGs). How to achieve de novo appendage regeneration by synchronized evaluation of HFs, SwGs and sebaceous glands (SeGs) is still challenging. Here, we developed a volar skin excisional wound model (VEWM) that is suitable for examining cutaneous wound healing with multiple-appendage restoration, as well as innervation, providing a new research paradigm for the perfect regeneration of skin wounds. Methods Macroscopic observation, iodine–starch test, morphological staining and qRT-PCR analysis were used to detect the existence of HFs, SwGs, SeGs and distribution of nerve fibres in the volar skin. Wound healing process monitoring, HE/Masson staining, fractal analysis and behavioral response assessment were performed to verify that VEWM could mimic the pathological process and outcomes of human scar formation and sensory function impairment. Results HFs are limited to the inter-footpads. SwGs are densely distributed in the footpads, scattered in the IFPs. The volar skin is richly innervated. The wound area of the VEWM at 1, 3, 7 and 10 days after the operation is respectively 89.17% ± 2.52%, 71.72% ± 3.79%, 55.09 % ± 4.94% and 35.74% ± 4.05%, and the final scar area accounts for 47.80% ± 6.22% of the initial wound. While the wound area of BEWM at 1, 3, 7 and 10 days after the operation are respectively 61.94% ± 5.34%, 51.26% ± 4.89%, 12.63% ± 2.86% and 6.14% ± 2.84%, and the final scar area accounts for 4.33% ± 2.67% of the initial wound. Fractal analysis of the post-traumatic repair site for VEWM vs human was performed: lacunarity values, 0.040 ± 0.012 vs 0.038 ± 0.014; fractal dimension values, 1.870 ± 0.237 vs 1.903 ± 0.163. Sensory nerve function of normal skin vs post-traumatic repair site was assessed: mechanical threshold, 1.05 ± 0.52 vs 4.90 g ± 0.80; response rate to pinprick, 100% vs 71.67% ± 19.92%, and temperature threshold, 50.34°C ± 3.11°C vs 52.13°C ± 3.54°C. Conclusions VEWM closely reflects the pathological features of human wound healing and can be applied for skin multiple-appendages regeneration and innervation evaluation.

Funder

National Nature Science Foundation of China

CAMS Innovation Fund for Medical Sciences

Military Medical Research Projects

Military Medical Research and Development Projects

Specific Research Fund of The Innovation Platform for Academicians of Hainan Province

Publisher

Oxford University Press (OUP)

Subject

Critical Care and Intensive Care Medicine,Dermatology,Biomedical Engineering,Emergency Medicine,Immunology and Allergy,Surgery

Reference50 articles.

1. Skin health from the inside out;Woodby;Annu Rev Food Sci Technol,2020

2. Skin;Gravitz;Nature,2018

3. Wound healing: a cellular perspective;Rodrigues;Physiol Rev,2019

4. State policy for managing chronic skin wounds in China;Fu;Wound Repair Regen,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3