Ancestral Sequence Reconstruction of a Cytochrome P450 Family Involved in Chemical Defense Reveals the Functional Evolution of a Promiscuous, Xenobiotic-Metabolizing Enzyme in Vertebrates

Author:

Harris Kurt L.1,Thomson Raine E.S.1,Gumulya Yosephine1,Foley Gabriel1,Carrera-Pacheco Saskya E.2,Syed Parnayan1,Janosik Tomasz3,Sandinge Ann-Sofie4,Andersson Shalini5,Jurva Ulrik4,Bodén Mikael1ORCID,Gillam Elizabeth M.J.1ORCID

Affiliation:

1. School of Chemistry and Molecular Biosciences, The University of Queensland , St. Lucia, Brisbane 4072, QLD, Australia

2. Centro de Investigación Biomédica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE , Quito 170147, Ecuador

3. RISE Research Institutes of Sweden, Division Bioeconomy and Health, Chemical Process and Pharmaceutical Development , Södertälje, Sweden

4. DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D , Astrazeneca, Gothenburg, Sweden

5. Discovery Sciences, BioPharmaceuticals R&D , Astrazeneca, Gothenburg, Sweden

Abstract

AbstractThe cytochrome P450 family 1 enzymes (CYP1s) are a diverse family of hemoprotein monooxygenases, which metabolize many xenobiotics including numerous environmental carcinogens. However, their historical function and evolution remain largely unstudied. Here we investigate CYP1 evolution via the reconstruction and characterization of the vertebrate CYP1 ancestors. Younger ancestors and extant forms generally demonstrated higher activity toward typical CYP1 xenobiotic and steroid substrates than older ancestors, suggesting significant diversification away from the original CYP1 function. Caffeine metabolism appears to be a recently evolved trait of the CYP1A subfamily, observed in the mammalian CYP1A lineage, and may parallel the recent evolution of caffeine synthesis in multiple separate plant species. Likewise, the aryl hydrocarbon receptor agonist, 6-formylindolo[3,2-b]carbazole (FICZ) was metabolized to a greater extent by certain younger ancestors and extant forms, suggesting that activity toward FICZ increased in specific CYP1 evolutionary branches, a process that may have occurred in parallel to the exploitation of land where UV-exposure was higher than in aquatic environments. As observed with previous reconstructions of P450 enzymes, thermostability correlated with evolutionary age; the oldest ancestor was up to 35 °C more thermostable than the extant forms, with a 10T50 (temperature at which 50% of the hemoprotein remains intact after 10 min) of 71 °C. This robustness may have facilitated evolutionary diversification of the CYP1s by buffering the destabilizing effects of mutations that conferred novel functions, a phenomenon which may also be useful in exploiting the catalytic versatility of these ancestral enzymes for commercial application as biocatalysts.

Publisher

Oxford University Press (OUP)

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3