Testing independence for sparse longitudinal data

Author:

Zhu Changbo1ORCID,Yao Junwen2,Wang Jane-Ling2

Affiliation:

1. Department of Applied and Computational Mathematics and Statistics, University of Notre Dame , 101H Crowley Hall , Notre Dame, Indiana 46556, U.S.A

2. Department of Statistics, University of California , Davis, One Shields Avenue , Davis, California 95616, U.S.A

Abstract

Abstract With the advance of science and technology, more and more data are collected in the form of functions. A fundamental question for a pair of random functions is to test whether they are independent. This problem becomes quite challenging when the random trajectories are sampled irregularly and sparsely for each subject. In other words, each random function is only sampled at a few time-points, and these time-points vary with subjects. Furthermore, the observed data may contain noise. To the best of our knowledge, there exists no consistent test in the literature to test the independence of sparsely observed functional data. We show in this work that testing pointwise independence simultaneously is feasible. The test statistics are constructed by integrating pointwise distance covariances (Székely et al., 2007) and are shown to converge, at a certain rate, to their corresponding population counterparts, which characterize the simultaneous pointwise independence of two random functions. The performance of the proposed methods is further verified by Monte Carlo simulations and analysis of real data.

Funder

National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3