Novel SCCmec type XV (7A) and two pseudo-SCCmec variants in foodborne MRSA in China

Author:

Wang Wei1,Hu Yue2,Baker Michelle2,Dottorini Tania2,Li Hui1,Dong Yinping1,Bai Yao1,Fanning Séamus134,Li Fengqin1ORCID

Affiliation:

1. NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China

2. School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Leicestershire, UK

3. UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin, Ireland

4. Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Stranmillis Road, Belfast, Northern Ireland

Abstract

Abstract Background Staphylococcal cassette chromosome mec (SCCmec) elements are highly diverse and have been classified into 14 types. Novel SCCmec variants have been frequently detected from humans and animals but rarely from food. Objectives To characterize a novel SCCmec type and two SCCmec variants identified from food-associated MRSA in China. Methods Three MRSA (NV_1, NT_611 and NT_8) collected from retail foods in China were subjected to WGS and the SCCmec elements were determined. Results The novel SCCmecXV identified in NV_1 carried the mec gene complex class A (mecI-mecR1-mecA-IS431) and the ccr gene complex 7 (ccrA1B6), and a Tn558-mediated phenicol exporter gene fexA was detected in this SCCmecXV cassette. The pseudo-SCCmec elements ΨSCCmecNT_611 and ΨSCCmecNT_8 showed a truncated SCCmec pattern, carrying the class C2 mec gene complex but missing the ccr genes. The ΨSCCmecNT_611 element shared more similarities with those of Staphylococcus haemolyticus (AB478934.1) and carried a heavy metal resistance gene cluster cadD-cadX-arsC-arsB-arsR-copA. The ΨSCCmecNT_8 MRSA exhibited a highly resistant phenotype, showing the absence of a 19.3 kb segment compared with the reference SCCmecXII element (CP019945.1). Notably, a 46 kb region containing multiple transposons encoding antimicrobial or metal resistance genes flanked by IS431 or IS256 was identified ∼30 kb downstream from the mec gene complex in ΨSCCmecNT_8, which might explain such high resistance in MRSA NT_8. Conclusions Our finding of novel and pseudo-SCCmec elements reflected the ongoing intra/interspecies genetic rearrangements in staphylococci. Further study will be needed to investigate the biological significance and prevalence of those SCCmec variants along the food chain.

Funder

Ministry of Science and Technology of the People's Republic of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3