hTERT promoter methylation promotes small cell lung cancer progression and radiotherapy resistance

Author:

Zhai Guangsheng12,Li Jianbin1,Zheng Jianbo3,An Peng4,Chen Xiaohui5,Wang Xiaodong6,Li Chuanzhao7

Affiliation:

1. Department of Radiotherapy, the Tumor Hospital of Shandong Province, No. 440 of Jiyan Road, Ji’nan 255000, Shandong, China

2. Department of Radiotherapy, the Central Hospital of Zibo of Shandong Province, No. 54 of Gongqingtuan West Road, Zhangdian District, Zibo 255022, Shandong, China

3. Department of Urology Surgery, the Central Hospital of Zibo of Shandong Province, No. 54 of Gongqingtuan West Road, Zhangdian District, Zibo 255022, Shandong, China

4. Department of Emergency and Critical Care Medicine, Shanghai Sixth People’s Hospital East, No. 222 West Third Road Around Lake, Nanhui New City Town, Pudong District, Shanghai 200120, China

5. Department of Oncology, Maternal and Child Health Hospital of Zibo of Shandong Province, No. 11 of Xingyuan East Road, Zhangdian District, Zibo 255022, Shandong, China

6. Department of Radiotherapy, Fourth People’s Hospital of Zibo of Shandong Province, No. 119 of Shanquan Road, Zhangdian District, Zibo 255022, Shandong, China

7. Department of General Medicine, the Central Hospital of Zibo of Shandong Province, No. 54 of Gongqingtuan West Road, Zhangdian District, Zibo 255022, Shandong, China

Abstract

Abstract Small cell lung cancer (SCLC) has been a devastating actuality in clinic and the molecular mechanisms underlying this disease remain unclear. The epigenetic alterations located in the promoter region of human telomerase reverse transcriptase (hTERT) have been demonstrated as one of the most prevalent non-coding genomic modifications in multiple cancers. However, alteration of hTERT promoter methylation in SCLC and the subsequently induced change in tumor cell behavior remains unclear. In this research, we hypothesized that abnormal methylation of hTERT promotor enhanced the progression of SCLC and the outcome of radiotherapy resistance. Quantitative real-time PCR and western blot assays were performed to evaluate the RNA and protein levels of hTERT and enhancer of zeste homolog 2 (EZH2), respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to estimate the viability and X-ray sensitivity of H20 and H446 cell lines. Functionally, upregulation of hTERT promoted the proliferation and migration of H20 and H446 cells, and the high-level of methylation in the promoter region of hTERT induced by radiation caused radio-resistance in SCLC. Mechanically, methylation of hTERT promoter enhanced the progression and radio-resistance of SCLC through upregulating the expression of its downstream effector EZH2.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3