Interferometric image reconstruction using closure invariants and machine learning

Author:

Thyagarajan Nithyanandan1ORCID,Hoefs Lucas12ORCID,Wong O Ivy13ORCID

Affiliation:

1. Commonwealth Scientific and Industrial Research Organisation (CSIRO), Space and Astronomy , PO Box 1130, Bentley, WA 6102 , Australia

2. Curtin University, Mechatronics Engineering Department , Bentley, WA 6102 , Australia

3. International Centre for Radio Astronomy Research, The University of Western Australia , Crawley, WA 6009 , Australia

Abstract

Abstract Interferometric closure invariants encode calibration-independent details of an object’s morphology. Excepting simple cases, a direct backward transformation from closure invariants to morphologies is not well established. We demonstrate using simple Machine Learning models that closure invariants can aid in morphological classification and parameter estimation. We consider six phenomenologically parametrized morphologies: point-like, uniform circular disc, crescent, dual disc, crescent with elliptical accretion disc, and crescent with double jet lobes. Using logistic regression (LR), multilayer perceptron (MLP), and random forest models on closure invariants obtained from a sparsely covered aperture, we find that all methods except LR can classify morphologies with $\gtrsim$80 per cent accuracy, which improves with greater aperture coverage. Separately from the classification problem, given an independently confirmed class, we estimate parameters of uniform circular disc, crescent, and dual disc morphologies using simple MLP models, and parametrically reconstruct images. The estimated parameters and images correspond well with inputs, but the accuracy worsens when degeneracies between parameters are present. This independent approach to interferometric imaging under challenging observing conditions such as that faced by the Event Horizon Telescope and Very Long Baseline Interferometry, in general, can complement other methods in robustly constraining an object’s morphology.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3