JNK signaling during IL-3–mediated differentiation contributes to the c-kit–potentiated allergic inflammatory capacity of mast cells

Author:

Hicks Natalie J1ORCID,Crozier Robert W E1ORCID,MacNeil Adam J1ORCID

Affiliation:

1. Department of Health Sciences, Brock University , 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1 , Canada

Abstract

Abstract Mast cells are leukocytes that mediate various aspects of immunity and drive allergic hypersensitivity pathologies. Mast cells differentiate from hematopoietic progenitor cells in a manner that is largely IL-3 dependent. However, molecular mechanisms, including the signaling pathways that control this process, have yet to be thoroughly investigated. Here, we examine the role of the ubiquitous and critical mitogen-activated protein kinase signaling pathway due to its position downstream of the IL-3 receptor. Hematopoietic progenitor cells were harvested from the bone marrow of C57BL/6 mice and differentiated to bone marrow–derived mast cells in the presence of IL-3 and mitogen-activated protein kinase inhibitors. Inhibition of the JNK node of the mitogen-activated protein kinase pathway induced the most comprehensive changes to the mature mast cell phenotype. Bone marrow–derived mast cells differentiated during impaired JNK signaling expressed impaired c-kit levels on the mast cell surface, first detected at week 3 of differentiation. Following 1 wk of inhibitor withdrawal and subsequent stimulation of IgE-sensitized FcεRI receptors with allergen (TNP-BSA) and c-kit receptors with stem cell factor, JNK-inhibited bone marrow–derived mast cells exhibited impediments in early-phase mediator release through degranulation (80% of control), as well as late-phase secretion of CCL1, CCL2, CCL3, TNF, and IL-6. Experiments with dual stimulation conditions (TNP-BSA + stem cell factor or TNP-BSA alone) showed that impediments in mediator secretion were found to be mechanistically linked to reduced c-kit surface levels. This study is the first to implicate JNK activity in IL-3–mediated mast cell differentiation and also identifies development as a critical and functionally determinative period.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada Foundation for Innovation

Ontario Research Fund

Brock University

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

Reference72 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3