Construction of truncated PSMA as a PET reporter gene for CAR T cell trafficking

Author:

Zhang Yirui1,Song Xiangming23,Xu Zhuoshuo1,Lv Xiaoying23,Long Yu23,Lan Xiaoli23,Lei Ping1

Affiliation:

1. Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology , No. 13, Hangkong Road, Wuhan, Hubei, 430030 , China

2. Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , No. 1277 Jiefang Ave, Wuhan 430022, Hubei Province , China

3. Hubei Province Key Laboratory of Molecular Imaging , No. 1277 Jiefang Ave, Wuhan 430022, Hubei Province , China

Abstract

Abstract In solid tumors, there are multiple barriers for a chimeric antigen receptor (CAR) T cell to surmount in order to reach the tumor site. For better understanding whether CAR T cells effectively infiltrate into tumor site, and simultaneously, whether there are off-target effects, real-time monitoring technologies need to be established. Cell-based positron emission tomography reporter genes have been developed to monitor engineered cells in living subjects. In this study, we reported the construction of a novel reporter gene truncated prostate-specific membrane antigen (ΔPSMA) pending for monitoring CAR T cells using 68Ga-PSMA-617 and a method for tracking the distribution of CAR T cells in vivo was developed. Data were provided to demonstrate that ΔPSMA was predominantly localized on the plasma membrane and could take up 68Ga-PSMA-617 in vitro in a time-dependent manner. And the expression of ΔPSMA did not affect CAR expression and cytolytic capacity of CAR T cells. CAR-ΔPSMA T cell xenografts in nude mice were clearly imaged by positron emission tomography 60 min after injection of 68Ga-PSMA-617. PSMA paired with 68Ga-PSMA-617 was capable of identifying approximately 1 × 104 engineered CAR T cells. The ability to image small numbers of CAR T cells in vivo would be helpful to accelerate the translation of cell-based therapies into the clinic, and it may reinforce our understanding of treatment success, failure, and toxicity.

Funder

National Natural Science Foundation of China

Hubei Province Science and Technology Innovation Team

Key Project of Hubei Province Natural Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3