Glia maturation factor-γ regulates amyloid-β42 phagocytosis through scavenger receptor AI in murine macrophages

Author:

Aerbajinai Wulin1ORCID,Zhu Jianqiong1,Chin Kyung1,Rodgers Griffin P1

Affiliation:

1. Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, MD, 20892 , USA

Abstract

Abstract Dysfunctional phagocytic clearance of β-amyloid (Aβ) in microglia and peripheral macrophages/monocytes has been implicated in Alzheimer’s disease (AD), but the mechanisms underlying this dysfunction are not yet well understood. In this study, we examined the role of glia maturation factor-γ (GMFG), an actin-disassembly protein that is highly expressed in immune cells, in macrophage Aβ phagocytosis and in regulating scavenger receptor AI (SR-AI), a cell-surface receptor that has previously been implicated in Aβ clearance. GMFG knockdown increased phagocytosis of Aβ42 in BMDMs and RAW264.7 murine macrophages, while GMFG overexpression reduced Aβ42 uptake in these cells. Blocking with anti-SR-AI antibodies inhibited Aβ42 uptake in GMFG-knockdown cells, establishing a role for SR-AI in Aβ42 phagocytosis. GMFG knockdown increased SR-AI protein expression under both basal conditions and in response to Aβ42 treatment via both the transcriptional and post-transcriptional level in RAW264.7 macrophages. GMFG knockdown modulated Aβ42-induced K48-linked and K63-polyubiquitination of SR-AI, the phosphorylation of SR-AI and JNK, suggesting that GMFG plays a role for intracellular signaling in the SR-AI–mediated uptake of Aβ. Further, GMFG-knockdown cells displayed increased levels of the transcriptional factor MafB, and silencing of MafB in these cells reduced their SR-AI expression. Finally, GMFG was found to interact with the nuclear pore complex component RanBP2, and silencing of RanBP2 in GMFG-knockdown cells reduced their SR-AI expression. Collectively, these data support the role of GMFG as a novel regulator of SR-AI in macrophage Aβ phagocytosis, and may provide insight into therapeutic approaches to potentially slow or prevent the progression of AD.

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3