VISTA nonredundantly regulates proliferation and CD69low γδ T cell accumulation in the intestine in murine sepsis

Author:

Gray Chyna C1,Armstead Brandon E12,Chung Chun-Shiang1,Chen Yaping1,Ayala Alfred12ORCID

Affiliation:

1. Division of Surgical Research, Department of Surgery, Brown University , Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903 , United States

2. Pathobiology Graduate Program, Brown University , Box G-B495, Providence, RI 02912 , United States

Abstract

Abstract Sepsis is a dysregulated systemic immune response to infection i.e. responsible for ∼35% of in-hospital deaths at a significant fiscal healthcare cost. Our laboratory, among others, has demonstrated the efficacy of targeting negative checkpoint regulators (NCRs) to improve survival in a murine model of sepsis, cecal ligation and puncture (CLP). B7-CD28 superfamily member, V-domain immunoglobulin suppressor of T cell activation (VISTA), is an ideal candidate for strategic targeting in sepsis. VISTA is a 35 to 45 kDa type 1 transmembrane protein with unique biology that sets it apart from all other NCRs. We recently reported that VISTA−/− mice had a significant survival deficit post-CLP, which was rescued upon adoptive transfer of a VISTA-expressing pMSCV-mouse Foxp3-EF1α-GFP-T2A-puro stable Jurkat cell line (Jurkatfoxp3 T cells). Based on our prior study, we investigated the effector cell target of Jurkatfoxp3 T cells in VISTA−/− mice. γδ T cells are a powerful lymphoid subpopulation that require regulatory fine-tuning by regulatory T cells to prevent overt inflammation/pathology. In this study, we hypothesized that Jurkatfoxp3 T cells nonredundantly modulate the γδ T cell population post-CLP. We found that VISTA−/− mice have an increased accumulation of intestinal CD69low γδ T cells, which are not protective in murine sepsis. Adoptive transfer of Jurkatfoxp3 T cells decreased the intestinal γδ T cell population, suppressed proliferation, skewed remaining γδ T cells toward a CD69high phenotype, and increased soluble CD40L in VISTA−/− mice post-CLP. These results support a potential regulatory mechanism by which VISTA skews intestinal γδ T cell lineage representation in murine sepsis.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3