Hybrid meshless-FEM method for 3-D magnetotelluric modelling using non-conformal discretization

Author:

Cao Jin1,Liu Yunhe1ORCID,Yin Changchun1ORCID,Wang Haoman1,Su Yang1,Wang Luyuan1,Ma Xinpeng1ORCID,Zhang Bo1

Affiliation:

1. College of Geo-Exploration Science and Technology, Jilin University , Changchun 130026 , China

Abstract

SUMMARY We propose a novel method for 3-D magnetotelluric (MT) forward modelling based on hybrid meshless and finite-element (FE) methods. This method divides the earth model into a central computational region and an expansion one. For the central region, we adopt scatter points to discretize the model, which can flexibly and accurately characterize the complex structures without generating unstructured mesh. The meshless method using compact support radial basis function is applied to simulate this area's electromagnetic field. While in the expansion region, to avoid the heavy time consumption and numerical error of the meshless method caused by non-uniform nodes, we adopt a node-based finite-element method with regular hexahedral mesh for stability. Finally, the two discretized systems are coupled at the interface nodes according to the continuity conditions of vector and scalar potentials. Considering that the normal electric field is discontinuous at the interface with resistivity discontinuity, while the shape functions for the meshless method are continuous, we further adopt the visibility criterion in constructing the support region. Numerical experiments on typical models show that using the same degree of freedom, the hybrid meshless-finite element method (FEM) algorithm has higher accuracy than the node-based FEM and meshless method. In addition, the electric field discontinuity at interfaces is well preserved, which proves the effectiveness of the visibility criterion method. In general, compared to the conventional grid-based method, this new approach does not need the complex mesh generation for complex structures and can achieve high accuracy, thus it has the potential to become a powerful 3-D MT forward modelling technique.

Funder

National Natural Science Foundation of China

Ministry of Education of the People's Republic of China

Jilin University

Guangxi Science and Technology Planning Project

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3