Treg-based immunotherapy for antigen-specific immune suppression and stable tolerance induction: a perspective

Author:

Sakaguchi Shimon12ORCID,Kawakami Ryoji2ORCID,Mikami Norihisa1ORCID

Affiliation:

1. Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University , Osaka , Japan

2. Insitute for Life and Medical Sciences, Kyoto University , Kyoto , Japan

Abstract

Summary FoxP3-expressing regulatory T cells (Tregs), whether naturally generated in the immune system or unnaturally induced from conventional T cells (Tconvs) in the laboratory, have much therapeutic value in treating immunological diseases and establishing transplantation tolerance. Natural Tregs (nTregs) can be selectively expanded in vivo by administration of low-dose IL-2 or IL-2 muteins for immune suppression. For adoptive Treg cell therapy, nTregs can be expanded in vitro by strong antigenic stimulation in the presence of IL-2. Synthetic receptors such as CAR can be expressed in nTregs to equip them with a particular target specificity for suppression. In addition, antigen-specific Tconvs can be converted in vitro to functionally stable Treg-like cells by a combination of antigenic stimulation, FoxP3 induction, and establishment of the Treg-type epigenome. This review discusses current and prospective strategies for Treg-based immune suppression and the issues to be resolved for achieving stable antigen-specific immune suppression and tolerance induction in the clinic by targeting Tregs.

Funder

Ministry of Education, Sports, and Culture of Japan

Japan Agency for Medical Research and Development

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Reference105 articles.

1. Regulatory T cells and human disease;Sakaguchi,2020

2. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases;Sakaguchi;J Immunol,1995

3. Control of regulatory T cell development by the transcription factor Foxp3;Hori,2003

4. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells;Fontenot,2003

5. An essential role for Scurfin in CD4+CD25+ T regulatory cells;Khattri,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3