Physical and biological dosimetric margin according to prescription method for stereotactic body radiation therapy

Author:

Kawahara Daisuke1,Saito Akito1,Nagata Yasushi12

Affiliation:

1. Department of Radiation Oncology, Institute of Biomedical and Health Sciences, Hiroshima University , Hiroshima 734-8551 , Japan

2. Hiroshima High-Precision Radiotherapy Cancer Center , Higashiku-ku Hiroshima, 732-0057 , Japan

Abstract

AbstractThis study aimed to expand the biological conversion factor (BCF) model, which converts the physical dosimetric margin (PDM) to the biological dosimetric margin (BDM) for point prescription with 3-dimensional conformal radiation therapy (3DCRT) and the marginal prescription method with volumetric-modulated arc radiotherapy (VMAT). The VMAT of the marginal prescription and the 3DCRT of the point prescription with lung stereotactic body radiation therapy (SBRT) by using RayStation were planned. The biological equivalent dose (BED) for a dose per fraction (DPF) of 3–20 Gy was calculated from these plans. The dose was perturbed with the calculation using a 1-mm step isocenter shift. The dose covering 95% of the target was greater than or equal to 90% of the prescribed physical dose, and the BED were defined as the PDM and BDM, respectively. The BCF was created as a function of the DPF. The PDM and BDM for all DPFs were larger with the point prescription method than with the marginal prescription method. The marginal prescription method with a 60% isodose line had a larger PDM and BDM. The BCF with the point prescription was smaller than that with the marginal prescription in the left–right (LR), anterior–posterior (AP) and cranio–caudal (CC) directions. In the marginal prescription method, the 60% isodose line had a higher BCF. In conclusion, the improved BCF method could be converted to BDM for point prescription with 3DCRT and marginal prescription method with VMAT, which is required for stereotactic radiation therapy in radiobiology-based treatment planning.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3