Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution

Author:

Jiang Limin1,Yu Hui1,Li Jiawei2,Tang Jijun34,Guo Yan1,Guo Fei5

Affiliation:

1. Comprehensive cancer center, Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA

2. School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin, China

3. Department of Computer Science, University of South Carolina, SC, USA

4. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China

5. School of Computer Science and Engineering, Central South University, Changsha, China

Abstract

Abstract Major histocompatibility complex (MHC) possesses important research value in the treatment of complex human diseases. A plethora of computational tools has been developed to predict MHC class I binders. Here, we comprehensively reviewed 27 up-to-date MHC I binding prediction tools developed over the last decade, thoroughly evaluating feature representation methods, prediction algorithms and model training strategies on a benchmark dataset from Immune Epitope Database. A common limitation was identified during the review that all existing tools can only handle a fixed peptide sequence length. To overcome this limitation, we developed a bilateral and variable long short-term memory (BVLSTM)-based approach, named BVLSTM-MHC. It is the first variable-length MHC class I binding predictor. In comparison to the 10 mainstream prediction tools on an independent validation dataset, BVLSTM-MHC achieved the best performance in six out of eight evaluated metrics. A web server based on the BVLSTM-MHC model was developed to enable accurate and efficient MHC class I binder prediction in human, mouse, macaque and chimpanzee.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Cancer Institute

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3