miRPreM and tiRPreM: Improved methodologies for the prediction of miRNAs and tRNA-induced small non-coding RNAs for model and non-model organisms

Author:

Rawal Hukam Chand12,Ali Shakir23,Mondal Tapan Kumar1ORCID

Affiliation:

1. ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa, New Delhi 110012, India

2. School of Interdisciplinary Sciences and Technology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India

3. Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India

Abstract

Abstract In recent years, microRNAs (miRNAs) and tRNA-derived RNA fragments (tRFs) have been reported extensively following different approaches of identification and analysis. Comprehensively analyzing the present approaches to overcome the existing variations, we developed a benchmarking methodology each for the identification of miRNAs and tRFs, termed as miRNA Prediction Methodology (miRPreM) and tRNA-induced small non-coding RNA Prediction Methodology (tiRPreM), respectively. We emphasized the use of respective genome of organism under study for mapping reads, sample data with at least two biological replicates, normalized read count support and novel miRNA prediction by two standard tools with multiple runs. The performance of these methodologies was evaluated by using Oryza coarctata, a wild rice species as a case study for model and non-model organisms. With organism-specific reference genome approach, 98 miRNAs and 60 tRFs were exclusively found. We observed high accuracy (13 out of 15) when tested these genome-specific miRNAs in support of analyzing the data with respective organism. Such a strong impact of miRPreM, we have predicted more than double number of miRNAs (186) as compared with the traditional approaches (79) and with tiRPreM, we have predicted all known classes of tRFs within the same small RNA data. Moreover, the methodologies presented here are in standard form in order to extend its applicability to different organisms rather than restricting to plants. Hence, miRPreM and tiRPreM can fulfill the need of a comprehensive methodology for miRNA prediction and tRF identification, respectively, for model and non-model organisms.

Funder

Department of Biotechnology

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3