Predicting potential small molecule–miRNA associations based on bounded nuclear norm regularization

Author:

Chen Xing1ORCID,Zhou Chi2,Wang Chun-Chun2ORCID,Zhao Yan2

Affiliation:

1. Artificial Intelligence Research Institute, China University of Mining and Technology, Xuzhou 221116, China

2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Abstract Mounting evidence has demonstrated the significance of taking microRNAs (miRNAs) as the target of small molecule (SM) drugs for disease treatment. Given the fact that exploring new SM–miRNA associations through biological experiments is extremely expensive, several computing models have been constructed to reveal the possible SM–miRNA associations. Here, we built a computing model of Bounded Nuclear Norm Regularization for SM–miRNA Associations prediction (BNNRSMMA). Specifically, we first constructed a heterogeneous SM–miRNA network utilizing miRNA similarity, SM similarity, confirmed SM–miRNA associations and defined a matrix to represent the heterogeneous network. Then, we constructed a model to complete this matrix by minimizing its nuclear norm. The Alternating Direction Method of Multipliers was adopted to minimize the nuclear norm and obtain predicted scores. The main innovation lies in two aspects. During completion, we limited all elements of the matrix within the interval of (0,1) to make sure they have practical significance. Besides, instead of strictly fitting all known elements, a regularization term was incorporated to tolerate the noise in integrated similarities. Furthermore, four kinds of cross-validations on two datasets and two types of case studies were performed to evaluate the predictive performance of BNNRSMMA. Finally, BNNRSMMA attained areas under the curve of 0.9822 (0.8433), 0.9793 (0.8852), 0.8253 (0.7350) and 0.9758 ± 0.0029 (0.8759 ± 0.0041) under global leave-one-out cross-validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and 5-fold cross-validation based on Dataset 1(Dataset 2), respectively. With regard to case studies, plenty of predicted associations have been verified by experimental literatures. All these results confirmed that BNNRSMMA is a reliable tool for inferring associations.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3