Rare variant association tests for ancestry-matched case-control data based on conditional logistic regression

Author:

Cheng Shanshan1,Lyu Jingjing1,Shi Xian1,Wang Kai1,Wang Zengmiao2,Deng Minghua234,Sun Baoluo5,Wang Chaolong16ORCID

Affiliation:

1. Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China

2. Center for Quantitative Biology, Peking University, Beijing 100871, P. R. China

3. LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, P. R. China

4. Center for Statistical Sciences, Peking University, Beijing 100871, P. R. China

5. Department of Statistics and Data Science, National University of Singapore, Singapore 117546, Singapore

6. Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China

Abstract

Abstract With the increasing volume of human sequencing data available, analysis incorporating external controls becomes a popular and cost-effective approach to boost statistical power in disease association studies. To prevent spurious association due to population stratification, it is important to match the ancestry backgrounds of cases and controls. However, rare variant association tests based on a standard logistic regression model are conservative when all ancestry-matched strata have the same case-control ratio and might become anti-conservative when case-control ratio varies across strata. Under the conditional logistic regression (CLR) model, we propose a weighted burden test (CLR-Burden), a variance component test (CLR-SKAT) and a hybrid test (CLR-MiST). We show that the CLR model coupled with ancestry matching is a general approach to control for population stratification, regardless of the spatial distribution of disease risks. Through extensive simulation studies, we demonstrate that the CLR-based tests robustly control type 1 errors under different matching schemes and are more powerful than the standard Burden, SKAT and MiST tests. Furthermore, because CLR-based tests allow for different case-control ratios across strata, a full-matching scheme can be employed to efficiently utilize all available cases and controls to accelerate the discovery of disease associated genes.

Funder

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3