IKKβ stabilizes Mitofusin 2 and suppresses doxorubicin cardiomyopathy

Author:

Guberman Matthew12,Dhingra Rimpy12ORCID,Cross Jenna12,Margulets Victoria12,Gang Hongying12,Rabinovich-Nikitin Inna12,Kirshenbaum Lorrie A123ORCID

Affiliation:

1. The Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, University of Manitoba , Winnipeg, MB , Canada R2H 2H6

2. Department of Physiology and Pathophysiology, University of Manitoba , Winnipeg, MB , Canada R2H 2H6

3. Department of Pharmacology and Therapeutics, Rady College of Medicine, Max Rady Faculty of Health Sciences, University of Manitoba , Winnipeg, MB , Canada R2H 2H6

Abstract

Abstract Aims The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKβ suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined. Methods and results Herein, we identify a novel signalling axis that functionally connects IKKβ and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2. In contrast to vehicle-treated cells, MFN2 was highly ubiquitinated and rapidly degraded by the proteasomal-regulated pathway in cardiac myocytes treated with doxorubicin. The loss of MFN2 activity resulted in mitochondrial perturbations, including increased reactive oxygen species (ROS) production, impaired respiration, and necrotic cell death. Interestingly, doxorubicin-induced degradation of MFN2 and mitochondrial-regulated cell death were contingent upon IKKβ kinase activity. Notably, immunoprecipitation and proximity ligation assays revealed that IKKβ interacted with MFN2 suggesting that MFN2 may be a phosphorylation target of IKKβ. To explore this possibility, mass spectrometry analysis identified a novel MFN2 phospho-acceptor site at serine 53 that was phosphorylated by wild-type IKKβ but not by a kinase-inactive mutant IKKβK–M. Based on these findings, we reasoned that IKKβ-mediated phosphorylation of serine 53 may influence MFN2 protein stability. Consistent with this view, an IKKβ-phosphomimetic MFN2 (MFN2S53D) was resistant to proteasomal degradation induced by doxorubicin whereas wild-type MFN2 and IKKβ-phosphorylation defective MFN2 mutant (MFNS53A) were readily degraded in cardiac myocytes treated with doxorubicin. Concordantly, gain of function of IKKβ or MFN2S53D suppressed doxorubicin-induced mitochondrial injury and cell death. Conclusions The findings of this study reveal a novel survival pathway for IKKβ that is mutually dependent upon and obligatory linked to the phosphorylation and stabilization of the mitochondrial dynamics protein MFN2.

Funder

Canadian Institute for Health Research

St. Boniface Hospital Research Foundation

Canada Research Chair in Molecular Cardiology

Manitoba Medical Services Foundation

The Winnipeg Foundation

Evelyn Wyrzykoski Family Professorship in Cardiovascular Sciences

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3