Ultrasmall Superparamagnetic Iron Oxide Imaging Identifies Tissue and Nerve Inflammation in Pain Conditions

Author:

Shen Shiqian1,Ding Weihua2,Ahmed Shihab1,Hu Ranliang3,Opalacz Arissa1,Roth Sarah1,You Zerong1,Wotjkiewicz Gregory R4,Lim Grewo1,Chen Lucy1,Mao Jianren1,Chen John W4,Zhang Yi1

Affiliation:

1. Department of Anesthesia, Critical Care and Pain Medicine, MGH Center for Translational Pain Research, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

2. Department of Anesthesia and Pain Medicine, Zhejiang University School of Medicine, Hangzhou, China

3. Department of Radiology and Imaging Sciences, Emory University Hospital, Atlanta, Georgia

4. Department of Radiology, Institute for Innovation in Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA

Abstract

Abstract Objective Correlation between radiologic structural abnormalities and clinical symptoms in low back pain patients is poor. There is an unmet clinical need to image inflammation in pain conditions to aid diagnosis and guide treatment. Ferumoxytol, an ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle, is clinically used to treat iron deficiency anemia and showed promise in imaging tissue inflammation in human. We explored whether ferumoxytol can be used to identify tissue and nerve inflammation in pain conditions in animals and humans. Methods Complete Freud’s adjuvant (CFA) or saline was injected into mice hind paws to establish an inflammatory pain model. Ferumoxytol (20 mg/kg) was injected intravenously. Magnetic resonance imaging (MRI) was performed prior to injection and 72 hours postinjection. The changes in the transverse relaxation time (T2) before and after ferumoxytol injection were compared between mice that received CFA vs saline injection. In the human study, we administered ferumoxytol (4 mg/kg) to a human subject with clinical symptoms of lumbar radiculopathy and compared the patient with a healthy subject. Results Mice that received CFA exhibited tissue inflammation and pain behaviors. The changes in T2 before and after ferumoxytol injection were significantly higher in mice that received CFA vs saline (20.8 ± 3.6 vs 2.2 ± 2.5, P = 0.005). In the human study, ferumoxytol-enhanced MRI identified the nerve root corresponding to the patient’s symptoms, but the nerve root was not impinged by structural abnormalities, suggesting the potential superiority of this approach over conventional structural imaging techniques. Conclusions Ferumoxytol-enhanced MRI can identify tissue and nerve inflammation and may provide a promising diagnostic tool in assessing pain conditions in humans.

Funder

National Institutes of Health

Foundation of Anesthesia Research and Education grant, and departmental research funds

Hangzhou Science and Technology Plan

Zhejiang Medical Science and Technology Plan

Publisher

Oxford University Press (OUP)

Subject

Anesthesiology and Pain Medicine,Clinical Neurology,General Medicine

Reference19 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3