An artificial intelligence model based on transrectal ultrasound images of biopsy needle tract tissues to differentiate prostate cancer

Author:

Li Shiyu1,Ye Xiuqin2,Tian Hongtian2,Ding Zhimin2,Cui Chen2,Shi Siyuan2,Yang Yang2,Li Guoqiu2,Chen Jing2,Lin Ziwei2,Ni Zhipeng2,Xu Jinfeng2,Dong Fajin2

Affiliation:

1. Department of Ultrasound, The Second Clinical Medical College of Jinan University , China

2. Department of Ultrasound, The Second Clinical Medical College , Jinan University, Shenzhen People’s Hospital, Shenzhen, Guangdong 518020 , China

Abstract

Abstract Purpose We aimed to develop an artificial intelligence (AI) model based on transrectal ultrasonography (TRUS) images of biopsy needle tract (BNT) tissues for predicting prostate cancer (PCa) and to compare the PCa diagnostic performance of the radiologist model and clinical model. Methods A total of 1696 2D prostate TRUS images were involved from 142 patients between July 2021 and May 2022. The ResNet50 network model was utilized to train classification models with different input methods: original image (Whole model), BNT (Needle model), and combined image [Feature Pyramid Networks (FPN) model]. The training set, validation set, and test set were randomly assigned, then randomized 5-fold cross-validation between the training set and validation set was performed. The diagnostic effectiveness of AI models and image combination was accessed by an independent testing set. Then, the optimal AI model and image combination were selected to compare the diagnostic efficacy with that of senior radiologists and the clinical model. Results In the test set, the area under the curve, specificity, and sensitivity of the FPN model were 0.934, 0.966, and 0.829, respectively; the diagnostic efficacy was improved compared with the Whole and Needle models, with statistically significant differences (P < 0.05), and was better than that of senior radiologists (area under the curve: 0.667). The FPN model detected more PCa compared with senior physicians (82.9% vs. 55.8%), with a 61.3% decrease in the false-positive rate and a 23.2% increase in overall accuracy (0.887 vs. 0.655). Conclusion The proposed FPN model can offer a new method for prostate tissue classification, improve the diagnostic performance, and may be a helpful tool to guide prostate biopsy.

Funder

Commission of Science and Technology of Shenzhen

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3