Fluorescent Reporter Zebrafish Line for Estrogenic Compound Screening Generated Using a CRISPR/Cas9-Mediated Knock-in System

Author:

Abdelmoneim Ahmed12,Clark Cedric L1,Mukai Motoko1ORCID

Affiliation:

1. Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853

2. Department of Veterinary Forensic Medicine and Toxicology, Assiut University, Assiut, Egypt

Abstract

Abstract An increasing number of compounds in our diet and environment are being identified as estrogenic, causing serious and detrimental effects on human, animal, and ecosystem health. Time- and cost-effective biological tools to detect and screen these compounds with potential high-throughput capabilities are in ever-growing demand. We generated a knock-in zebrafish transgenic line with enhanced green fluorescent protein (EGFP) driven by the regulatory region upstream of vitellogenin 1 (vtg1), a well-studied biomarker for estrogenic exposure, using CRISPR/Cas9 technology. Exposure to 17β-estradiol (E2: 0–625 nM) starting at 4-h post-fertilization in dechorionated embryos resulted in the significant induction of hepatic EGFP with ≥5 nM E2 as early as 3-days post-fertilization. Concentration- and time-dependent increase in the percentage of hepatic EGFP-positive larvae and extent of fluorescence expression, categorized into 3 expression levels, were observed with E2 exposure. A strong correlation between the levels of EGFP mRNA, vtg1 mRNA, and EGFP fluorescence levels were detected. Image analysis of the area and intensity of hepatic EGFP fluorescence resulted in high-fidelity quantitative measures that could be used in automated screening applications. In addition, exposure to bisphenol A (0–30 μM) resulted in quantitative responses showing promise for the use of this transgenic line to assess estrogenic activity of endocrine-disrupting chemicals. These results demonstrate that this novel knock-in zebrafish reporter allows for distinct screening of in vivo estrogenic effects, endpoints of which can be used for laboratory testing of samples for estimation of possible human and environmental risks.

Funder

NIH

USDA

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3