Arsenic disrupts extracellular vesicle-mediated signaling in regenerating myofibers

Author:

Clemens Zachary1ORCID,Wang Kai23,Ambrosio Fabrisia23,Barchowsky Aaron1ORCID

Affiliation:

1. Department of Environmental and Occupational Health, University of Pittsburgh School of Public Health , Pittsburgh, Pennsylvania, USA

2. Discovery Center for Musculoskeletal Recovery, Schoen Adams Research Institute at Spaulding , Boston, Massachusetts, USA

3. Department of Physical Medicine and Rehabilitation, Harvard Medical School , Boston, Massachusetts, USA

Abstract

Abstract Chronic exposure to environmental arsenic is a public health crisis affecting hundreds of millions of individuals worldwide. Though arsenic is known to contribute to many pathologies and diseases, including cancers, cardiovascular and pulmonary diseases, and neurological impairment, the mechanisms for arsenic-promoted disease remain unresolved. This is especially true for arsenic impacts on skeletal muscle function and metabolism, despite the crucial role that skeletal muscle health plays in maintaining cardiovascular health, systemic homeostasis, and cognition. A barrier to researching this area is the challenge of interrogating muscle cell-specific effects in biologically relevant models. Ex vivo studies investigating mechanisms for muscle-specific responses to arsenic or other environmental contaminants primarily utilize traditional 2-dimensional culture models that cannot elucidate effects on muscle physiology or function. Therefore, we developed a contractile 3-dimensional muscle construct model—composed of primary mouse muscle progenitor cells differentiated in a hydrogel matrix—to study arsenic exposure impacts on skeletal muscle regeneration. Muscle constructs exposed to low-dose (50 nM) arsenic exhibited reduced strength and myofiber diameter following recovery from muscle injury. These effects were attributable to dysfunctional paracrine signaling mediated by extracellular vesicles (EVs) released from muscle cells. Specifically, we found that EVs collected from arsenic-exposed muscle constructs recapitulated the inhibitory effects of direct arsenic exposure on myofiber regeneration. In addition, muscle constructs treated with EVs isolated from muscles of arsenic-exposed mice displayed significantly decreased strength. Our findings highlight a novel model for muscle toxicity research and uncover a mechanism of arsenic-induced muscle dysfunction by the disruption of EV-mediated intercellular communication.

Funder

National Institute of Environmental Health Sciences

National Institute on Aging

National Institutes of Health

Center for Biologic Imaging

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3