Interaction with Yap underlies the species differences between humans and rodents in CAR-dependent hepatocyte proliferation

Author:

Shizu Ryota1,Makida Natsuki1,Sobe Keiichiro1,Ishimura Mai1,Takeshita Aki1,Hosaka Takuomi1,Kanno Yuichiro1,Sasaki Takamitsu1,Yoshinari Kouichi1

Affiliation:

1. University of Shizuoka Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, , 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan

Abstract

Abstract Constitutive androstane receptor (CAR), a nuclear receptor predominantly expressed in the liver, is activated by diverse chemicals and induces hepatocyte proliferation and hepatocarcinogenesis in rodents. However, the underlying mechanism responsible for CAR-dependent hepatocyte proliferation remains unclear. Importantly, this phenomenon has not been observed in the human liver. This study aimed to investigate the molecular mechanism underlying CAR-induced hepatocyte proliferation and to explore the species differences in hepatocyte proliferation between humans and rodents. Treatment of mice with the CAR activator TCPOBOP induced hepatocyte proliferation and nuclear accumulation of yes-associated protein (YAP), a known liver cancer inducer. This induction was abolished in CAR-knockout mice. Exogenously expressed YAP in cultured cells was accumulated in the nucleus by the co-expression with mouse CAR but not human CAR. Pull-down analysis of recombinant proteins revealed that mouse CAR interacted with YAP, whereas human CAR did not. Further investigations using YAP deletion mutants identified the WW domain of YAP as essential for interacting with CAR and showed that the PY motif (PPAY) in mouse CAR was crucial for binding to the WW domain, whereas human CAR with its mutated motif (PPAH) failed to interact with YAP. A mouse model harboring the Y150H mutation (PPAY to PPAH) in CAR displayed drastically attenuated TCPOBOP-induced hepatocyte proliferation and nuclear accumulation of YAP. CAR induces the nuclear accumulation of YAP through the PY motif-WW domain interaction to promote hepatocyte proliferation. The absence of this interaction in human CAR contributes to the lack of CAR-dependent hepatocyte proliferation in human livers.

Funder

Japan Society for the Promotion of Science

KAKENHI

Research Foundation for Pharmaceutical Sciences

Publisher

Oxford University Press (OUP)

Subject

Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3