Dimeric structures of DNA ATTTC repeats promoted by divalent cations

Author:

Trajkovski Marko1,Pastore Annalisa2,Plavec Janez134ORCID

Affiliation:

1. Slovenian NMR Centre, National Institute of Chemistry , 1000  Ljubljana , Slovenia

2. King's College London, the Maurice Wohl Clinical Neuroscience Institute , London , UK

3. Faculty of Chemistry and Chemical Technology, University of Ljubljana , 1000  Ljubljana , Slovenia

4. EN-FIST, Center of Excellence , 1000  Ljubljana , Slovenia

Abstract

Abstract Structural studies of repetitive DNA sequences may provide insights why and how certain repeat instabilities in their number and nucleotide sequence are managed or even required for normal cell physiology, while genomic variability associated with repeat expansions may also be disease-causing. The pentanucleotide ATTTC repeats occur in hundreds of genes important for various cellular processes, while their insertion and expansion in noncoding regions are associated with neurodegeneration, particularly with subtypes of spinocerebellar ataxia and familial adult myoclonic epilepsy. We describe a new striking domain-swapped DNA–DNA interaction triggered by the addition of divalent cations, including Mg2+ and Ca2+. The results of NMR characterization of d(ATTTC)3 in solution show that the oligonucleotide folds into a novel 3D architecture with two central C:C+ base pairs sandwiched between a couple of T:T base pairs. This structural element, referred to here as the TCCTzip, is characterized by intercalative hydrogen-bonding, while the nucleobase moieties are poorly stacked. The 5′- and 3′-ends of TCCTzip motif are connected by stem-loop segments characterized by A:T base pairs and stacking interactions. Insights embodied in the non-canonical DNA structure are expected to advance our understanding of why only certain pyrimidine-rich DNA repeats appear to be pathogenic, while others can occur in the human genome without any harmful consequences.

Funder

Slovenian Research and Innovation Agency

Publisher

Oxford University Press (OUP)

Subject

Genetics

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3