Site-specific acetylation of polynucleotide kinase 3′-phosphatase regulates its distinct role in DNA repair pathways

Author:

Islam Azharul1,Chakraborty Anirban1,Sarker Altaf H2,Aryal Uma K3,Pan Lang4,Sharma Gulshan1,Boldogh Istvan4,Hazra Tapas1ORCID

Affiliation:

1. Department of Internal Medicine, University of Texas Medical Branch , Galveston , TX 77555 ,  USA

2. Life Sciences Division, Lawrence Berkeley National Laboratory , Berkeley , CA 94720 ,  USA

3. Purdue Proteomics Facility, Bindley Bioscience Center, Purdue University , IN 47907 ,  USA

4. Department of Microbiology and Immunology, University of Texas Medical Branch , Galveston , TX 77555 ,  USA

Abstract

Abstract Mammalian polynucleotide kinase 3′-phosphatase (PNKP), a DNA end-processing enzyme with 3′-phosphatase and 5′-kinase activities, is involved in multiple DNA repair pathways, including base excision (BER), single-strand break (SSBR), and double-strand break repair (DSBR). However, little is known as to how PNKP functions in such diverse repair processes. Here we report that PNKP is acetylated at K142 (AcK142) by p300 constitutively but at K226 (AcK226) by CBP, only after DSB induction. Co-immunoprecipitation analysis using AcK142 or AcK226 PNKP-specific antibodies showed that AcK142-PNKP associates only with BER/SSBR, and AcK226 PNKP with DSBR proteins. Despite the modest effect of acetylation on PNKP’s enzymatic activity in vitro, cells expressing non-acetylable PNKP (K142R or K226R) accumulated DNA damage in transcribed genes. Intriguingly, in striatal neuronal cells of a Huntington's Disease (HD)-based mouse model, K142, but not K226, was acetylated. This is consistent with the reported degradation of CBP, but not p300, in HD cells. Moreover, transcribed genomes of HD cells progressively accumulated DSBs. Chromatin-immunoprecipitation analysis demonstrated the association of Ac-PNKP with the transcribed genes, consistent with PNKP’s role in transcription-coupled repair. Thus, our findings demonstrate that acetylation at two lysine residues, located in different domains of PNKP, regulates its distinct role in BER/SSBR versus DSBR.

Funder

National Institutes of Health

Baylor College of Medicine

NIAID

TRDRP

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3