A novel transient receptor potential C3/C6 selective activator induces the cellular uptake of antisense oligonucleotides

Author:

Kohashi Hiroto1,Nagata Ryu1,Tamenori Yusuke2ORCID,Amatani Tomorrow3,Ueda Yoshifumi3,Mori Yasuo3,Kasahara Yuuya4,Obika Satoshi15ORCID,Shimojo Masahito1ORCID

Affiliation:

1. Graduate School of Pharmaceutical Sciences, Osaka University , Osaka 565-0871 , Japan

2. School of Pharmaceutical Sciences, Osaka University , Osaka 565-0871 , Japan

3. Graduate School of Engineering, Kyoto University , Kyoto 615-8510 , Japan

4. National Institutes of Biomedical Innovation, Health and Nutrition , Osaka 567-0085 , Japan

5. Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University , Osaka 565-0871 , Japan

Abstract

Abstract Antisense oligonucleotide (ASO) therapy is a novel therapeutic approach in which ASO specifically binds target mRNA, resulting in mRNA degradation; however, cellular uptake of ASOs remains critically low, warranting improvement. Transient receptor potential canonical (TRPC) channels regulate Ca2+ influx and are activated upon stimulation by phospholipase C-generated diacylglycerol. Herein, we report that a novel TRPC3/C6/C7 activator, L687, can induce cellular ASO uptake. L687-induced ASO uptake was enhanced in a dose- and incubation-time-dependent manner. L687 enhanced the knockdown activity of various ASOs both in vitro and in vivo. Notably, suppression of TRPC3/C6 by specific siRNAs reduced ASO uptake in A549 cells. Application of BAPTA-AM, a Ca2+ chelator, and SKF96365, a TRPC3/C6 inhibitor, suppressed Ca2+ influx via TRPC3/C6, resulting in reduced ASO uptake, thereby suggesting that Ca2+ influx via TRPC3/C6 is critical for L687-mediated increased ASO uptake. L687 also induced dextran uptake, indicating that L687 increased endocytosis. Adding ASO to L687 resulted in endosome accumulation; however, the endosomal membrane disruptor UNC7938 facilitated endosomal escape and enhanced knockdown activity. We discovered a new function for TRPC activators regarding ASO trafficking in target cells. Our findings provide an opportunity to formulate an innovative drug delivery system for the therapeutic development of ASO.

Funder

Japan Agency for Medical Research and Development

Osaka University

Publisher

Oxford University Press (OUP)

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3