ALS iPSC-derived microglia and motor neurons respond to astrocyte-targeted IL-10 and CCL2 modulation

Author:

Allison Reilly L12,Ebert Allison D12ORCID

Affiliation:

1. Department of Cell Biology , Neurobiology and Anatomy, , 8701 Watertown Plank Rd, Milwaukee, WI 53226 , United States

2. Medical College of Wisconsin , Neurobiology and Anatomy, , 8701 Watertown Plank Rd, Milwaukee, WI 53226 , United States

Abstract

Abstract Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs). The loss of MNs in ALS leads to muscle weakness and wasting, respiratory failure, and death often within two years of diagnosis. Glial cells in ALS show aberrant expression of pro-inflammatory and neurotoxic proteins associated with activation and have been proposed as ideal therapeutic targets. In this study, we examined astrocyte-targeted treatments to reduce glial activation and neuron pathology using cells differentiated from ALS patient-derived iPSC carrying SOD1 and C9ORF72 mutations. Specifically, we tested the ability of increasing interleukin 10 (IL-10) and reducing C-C motif chemokine ligand 2 (CCL2/MCP-1) signaling targeted to astrocytes to reduce activation phenotypes in both astrocytes and microglia. Overall, we found IL10/CCL2NAb treated astrocytes to support anti-inflammatory phenotypes and reduce neurotoxicity, through different mechanisms in SOD1 and C9ORF72 cultures. We also found altered responses of microglia and motor neurons to astrocytic influences when cells were cultured together rather than in isolation. Together these data support IL-10 and CCL2 as non-mutation-specific therapeutic targets for ALS and highlight the role of glial-mediated pathology in this disease.

Funder

Medical College of Wisconsin Center for Immunology

Neuroscience Research Center

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3