Comprehensive analysis of autophagic functions of WIPI family proteins and their implications for the pathogenesis of β-propeller associated neurodegeneration

Author:

Shimizu Takahiro12,Tamura Norito1,Nishimura Taki13,Saito Chieko1,Yamamoto Hayashi14,Mizushima Noboru15ORCID

Affiliation:

1. The University of Tokyo Department of Biochemistry and Molecular Biology, Graduate School of Medicine, , Tokyo 113-8655 , Japan

2. The University of Tokyo Department of Neurology, Graduate School of Medicine, , Tokyo 113-8655 , Japan

3. PRESTO, Japan Science and Technology Agency , Tokyo 102-0076 , Japan

4. Nippon Medical School, Institute for Advanced Medical Sciences Department of Molecular Oncology, , Tokyo 113-8602 , Japan

5. International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo , Tokyo 113-8655 , Japan

Abstract

Abstract β-propellers that bind polyphosphoinositides (PROPPINs) are an autophagy-related protein family conserved throughout eukaryotes. The PROPPIN family includes Atg18, Atg21 and Hsv2 in yeast and WD-repeat protein interacting with phosphoinositides (WIPI)1–4 in mammals. Mutations in the WIPI genes are associated with human neuronal diseases, including β-propeller associated neurodegeneration (BPAN) caused by mutations in WDR45 (encoding WIPI4). In contrast to yeast PROPPINs, the functions of mammalian WIPI1–WIPI4 have not been systematically investigated. Although the involvement of WIPI2 in autophagy has been clearly shown, the functions of WIPI1, WIPI3 and WIPI4 in autophagy remain poorly understood. In this study, we comprehensively analyzed the roles of WIPI proteins by using WIPI-knockout (single, double and quadruple knockout) HEK293T cells and recently developed HaloTag-based reporters, which enable us to monitor autophagic flux sensitively and quantitatively. We found that WIPI2 was nearly essential for autophagy. Autophagic flux was unaffected or only slightly reduced by single deletion of WIPI3 (encoded by WDR45B) or WIPI4 but was profoundly reduced by double deletion of WIPI3 and WIPI4. Furthermore, we revealed variable effects of BPAN-related missense mutations on the autophagic activity of WIPI4. BPAN is characterized by neurodevelopmental and neurodegenerative abnormalities, and we found a possible association between the magnitude of the defect of the autophagic activity of WIPI4 mutants and the severity of neurodevelopmental symptoms. However, some of the BPAN-related missense mutations, which produce neurodegenerative signs, showed almost normal autophagic activity, suggesting that non-autophagic functions of WIPI4 may be related to neurodegeneration in BPAN.

Funder

Japan Science and Technology Agency

Exploratory Research for Advanced Technology

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3