Compound heterozygous IFT81 variations in a skeletal ciliopathy patient cause Bardet–Biedl syndrome-like ciliary defects

Author:

Tasaki Koshi1,Zhou Zhuang1,Ishida Yamato1,Katoh Yohei1ORCID,Nakayama Kazuhisa1ORCID

Affiliation:

1. Kyoto University Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, , Kyoto 606-8501, Japan

Abstract

Abstract Owing to their crucial roles in development and homeostasis, defects in cilia cause ciliopathies with diverse clinical manifestations. The intraflagellar transport (IFT) machinery, containing the IFT-A and IFT-B complexes, mediates not only the intraciliary bidirectional trafficking but also import and export of ciliary proteins together with the kinesin-2 and dynein-2 motor complexes. The BBSome, containing eight subunits encoded by causative genes of Bardet–Biedl syndrome (BBS), connects the IFT machinery to ciliary membrane proteins to mediate their export from cilia. Although mutations in subunits of the IFT-A and dynein-2 complexes cause skeletal ciliopathies, mutations in some IFT-B subunits are also known to cause skeletal ciliopathies. We here show that compound heterozygous variations of an IFT-B subunit, IFT81, found in a patient with skeletal ciliopathy cause defects in its interactions with other IFT-B subunits, and in ciliogenesis and ciliary protein trafficking when one of the two variants was expressed in IFT81-knockout (KO) cells. Notably, we found that IFT81-KO cells expressing IFT81(Δ490–519), which lacks the binding site for the IFT25-IFT27 dimer, causes ciliary defects reminiscent of those found in BBS cells and those in IFT74-KO cells expressing a BBS variant of IFT74, which forms a heterodimer with IFT81. In addition, IFT81-KO cells expressing IFT81(Δ490–519) in combination with the other variant, IFT81 (L645*), which mimics the cellular conditions of the above skeletal ciliopathy patient, demonstrated essentially the same phenotype as those expressing only IFT81(Δ490–519). Thus, our data indicate that BBS-like defects can be caused by skeletal ciliopathy variants of IFT81.

Funder

Otsuka-Toshimi Scholarship Foundation

Japan Society for the Promotion of Science

Publisher

Oxford University Press (OUP)

Subject

Genetics (clinical),Genetics,Molecular Biology,General Medicine

Reference92 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3