Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease

Author:

Li Hao1ORCID,Jacob Mina A1,Cai Mengfei12,Duering Marco34ORCID,Chamberland Maxime5,Norris David G5,Kessels Roy P C678,de Leeuw Frank-Erik1,Marques José P5,Tuladhar Anil M1

Affiliation:

1. Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center , 6500 HB Nijmegen , The Netherlands

2. Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University , 510080 Guangzhou , China

3. Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel , 4051 Basel , Switzerland

4. LMU Munich, University Hospital, Institute for Stroke and Dementia Research (ISD) , 81377 Munich , Germany

5. Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University , 6525 EN Nijmegen , The Netherlands

6. Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center , 6525 GC, Nijmegen , The Netherlands

7. Donders Institute for Brain, Cognition and Behaviour, Radboud University , 6525 EN Nijmegen , The Netherlands

8. Vincent van Gogh Institute for Psychiatry , 5803 AC Venray , The Netherlands

Abstract

Abstract The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (β = −0.30, Pcorrected < 0.001), lower R1 (β = −0.26, Pcorrected = 0.001), lower R2* (β = −0.32, Pcorrected < 0.001) and lower susceptibility values (β = −0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (β = 0.20, Pcorrected = 0.030), lower R1 values (β = 0.20, Pcorrected = 0.006), lower R2* values (β = 0.29, Pcorrected = 0.006) and lower susceptibility values (β = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.

Funder

China Scholarship Council

Dutch Brain Foundation

VIDI innovational

The Netherlands Organization for Health Research and Development

Dutch Heart Foundation

Publisher

Oxford University Press (OUP)

Subject

Neurology (clinical)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3